Markov Chains and Computer Science A not so Short Introduction

Jean-Marc Vincent
Laboratoire LIG, projet Inria-Mescal
UniversitéJoseph Fourier
Jean-Marc.Vincent@imag.fr

Spring 2015

Outline

(1) Markov Chain

- History
- Approaches

2. Formalisation
(3) Long run behavior
(4) Cache modeling

5 Synthesis

History (Andreï Markov)

This study investigates a text excerpt containing 20,000 Russian letters of the alphabet, excluding \mathbf{b} and $\mathbf{b},{ }^{2}$ from Pushkin's novel Eugene Onegin - the entire first chapter and sixteen stanzas of the second.

This sequence provides us with 20,000 connected trials, which are either a vowel or a consonant.

Accordingly, we assume the existence of an unknown constant probability p that the observed letter is a vowel. We determine the approximate value of p by observation, by counting all the vowels and consonants. Apart from p, we shall find - also through observation - the approximate values of two numbers p_{1} and p_{0}, and four numbers $p_{1,1}, p_{1,0}, p_{0,1}$, and $p_{0,0}$. They represent the following probabilities: $p_{1}-$ a vowel follows another vowel; p_{0} - a vowel follows a consonant; $p_{1,1}-$ a vowel follows two vowels; $p_{1,0}-$ a vowel follows a consonant that is preceded by a vowel; $p_{0,1}$ - a vowel follows a vowel that is preceded by a consonant; and, finally, $p_{0,0}-a$ vowel follows two consonants.

The indices follow the same system that I introduced in my paper "On a Case of Samples Connected in Complex Chain" [Markov 1911b]; with reference to my other paper, "Investigation of a Remarkable Case of Dependent Samples" [Markov 1907a], however, $p_{0}=p_{2}$. We denote the opposite probabilities for consonants with q and indices that follow the same pattern.

If we seek the value of p, we first find 200 approximate values from which we can determine the arithmetic mean. To be precise, we divide the entire sequence of 20,000 letters into 200 separate sequences of 100 letters, and count how many vowels there are in each 100: we obtain 200 numbers, which, when divided by 100 , yield 200 approximate values of p.

An example of statistical investigation in the text of "Eugene Onegin" illustrating coupling of "tests" in chains.
(1913) In Proceedings of Academic Scientific St. Petersburg, VI, pages 153-162.

1856-1922

Graphs and Paths

Random Walks

Path in a graph:
$X_{n} n$-th visited node
path : $i_{0}, i_{1}, \cdots, i_{n}$
normalized weight : arc $(i, j) \longrightarrow p_{i, j}$
concatenation : . $\longrightarrow \times$
$\mathcal{P}\left(i_{0}, i_{1}, \cdots, i_{n}\right)=p_{i_{0}, i_{1}} p_{i_{1}, i_{2}} \cdots p_{i_{n-1}, i_{n}}$
disjoint union : $\cup \longrightarrow+$

$$
\mathcal{P}\left(i_{0} \leadsto i_{n}\right)=\sum_{i_{1}, \cdots, i_{n-1}} p_{i_{0}, i_{1}} p_{i_{1}, i_{2}} \cdots p_{i_{n-1}, i_{n}}
$$

automaton : state/transitions randomized (language)

Dynamical Systems

Figure 3. A fern drawn by a Markov chain

Evolution Operator

Initial value : X_{0}
Recurrence equation: $X_{n+1}=\Phi\left(X_{n}, \xi_{n+1}\right)$
Innovation at step $n+1: \xi_{n+1}$
Finite set of innovations: $\left\{\phi_{1}, \phi_{2}, \cdots, \phi_{K}\right\}$
Random function (chosen with a given probability)

Diaconis-Freedman 99

Randomized Iterated Systems

Measure Approach

Ehrenfest's Urn (1907)

Paul Ehrenfest (1880-1933)

Distribution of K particles

Initial State $X_{0}=0$
State $=\mathrm{nb}$ of particles in 0
Dynamic : uniform choice of a particle and jump to the other side

$$
\begin{aligned}
\pi_{n}(i)= & \mathbb{P}\left(X_{n}=i \mid X_{0}=0\right) \\
= & \pi_{n-1}(i-1) \cdot \frac{K-i+1}{K} \\
& +\pi_{n-1}(i+1) \cdot \frac{i+1}{K}
\end{aligned} \quad \begin{aligned}
\pi_{n}= & \pi_{n-1} \cdot P
\end{aligned}
$$

Iterated product of matrices

Algorithmic Interpretation

int minimum (T, K)
$\min =+\infty$

$$
\mathrm{cpt}=0
$$

$$
\text { for }(k=0 ; k<K ; k++) \text { do }
$$

$$
\text { if }(\mathrm{T}[\mathrm{k}]<\min) \text { then }
$$

$$
\min =T[k] ;
$$

process(min);
cpt++;
end if
end for
return(cpt)
Worst case K;
Best case 1;
on average ?

Number of processing min

State : $X_{n}=$ rank of the $n^{\text {th }}$ processing

$$
\begin{aligned}
& \mathbb{P}\left(X_{n+1}=j \mid X_{n}=i, X_{n-1}=i_{k-1}, \cdots, X_{0}=i_{0}\right) \\
& =\mathbb{P}\left(X_{n+1}=j \mid X_{n}=i\right) \\
& \qquad \mathbb{P}\left(X_{n+1}=j \mid X_{n}=i\right)= \begin{cases}\frac{1}{i-1} & \text { si } j<i \\
0 & \text { sinon. }\end{cases}
\end{aligned}
$$

All the information of for the step $n+1$ is contained in the state at step n

$$
\tau=\min \left\{n ; \quad X_{n}=1\right\}
$$

Correlation of length 1

Outline

(1) Markov Chain

2) Formalisation

- States and transitions
- Applications
(3) Long run behavior

4 Cache modeling
(5) Synthesis

Formal definition

Let $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ a random sequence of variables in a discrete state-space \mathcal{X}
$\left\{X_{n}\right\}_{n \in \mathbb{N}}$ is a Markov chain with initial law $\pi(0)$ iff

- $X_{0} \sim \pi(0)$ and
- for all $n \in \mathbb{N}$ and for all $\left(j, i, i_{n-1}, \cdots, i_{0}\right) \in \mathcal{X}^{n+2}$

$$
\mathbb{P}\left(X_{n+1}=j \mid X_{n}=i, X_{n-1}=i_{n-1}, \cdots, x_{0}=i_{0}\right)=\mathbb{P}\left(X_{n+1}=j \mid X_{n}=i\right) .
$$

$\left\{X_{n}\right\}_{n \in \mathbb{N}}$ is a homogeneous Markov chain iff

- for all $n \in \mathbb{N}$ and for all $(j, i) \in \mathcal{X}^{2}$
(invariance during time of probability transition)

Formal definition

Let $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ a random sequence of variables in a discrete state-space \mathcal{X}
$\left\{X_{n}\right\}_{n \in \mathbb{N}}$ is a Markov chain with initial law $\pi(0)$ iff

- $X_{0} \sim \pi(0)$ and
- for all $n \in \mathbb{N}$ and for all $\left(j, i, i_{n-1}, \cdots, i_{0}\right) \in \mathcal{X}^{n+2}$

$$
\mathbb{P}\left(X_{n+1}=j \mid X_{n}=i, x_{n-1}=i_{n-1}, \cdots, x_{0}=i_{0}\right)=\mathbb{P}\left(X_{n+1}=j \mid X_{n}=i\right) .
$$

$\left\{X_{n}\right\}_{n \in \mathbb{N}}$ is a homogeneous Markov chain iff

- for all $n \in \mathbb{N}$ and for all $(j, i) \in \mathcal{X}^{2}$

$$
\mathbb{P}\left(X_{n+1}=j \mid X_{n}=i\right)=\mathbb{P}\left(X_{1}=j \mid X_{0}=i\right) \stackrel{\text { def }}{=} p_{i, j} .
$$

(invariance during time of probability transition)

Algebraic representation

$P=\left(\left(p_{i, j}\right)\right)$ is the transition matrix of the chain

- P is a stochastic matrix

$$
p_{i, j} \geqslant 0 ; \quad \sum_{j} p_{i, j}=1 .
$$

Linear recurrence equation $\pi_{n}(i)=\mathbb{P}\left(X_{n}=i\right)$

$$
\pi_{n}=\pi_{n-1} P
$$

- Equation of Chapman-Kolmogorov (homogeneous): $P^{n}=\left(\left(p_{i, j}^{(n)}\right)\right)$

$$
\begin{aligned}
& p_{i, j}^{(n)}=\mathbb{P}\left(X_{n}=j \mid X_{0}=i\right) ; \quad P^{n+m}=P^{n} . P^{m} ; \\
& \mathbb{P}\left(X_{n+m}=j \mid X_{0}=i\right)= \\
& =\sum_{k} \mathbb{P}\left(X_{n+m}=j \mid X_{m}=k\right) \mathbb{P}\left(X_{m}=k \mid X_{0}=i\right) ; \\
& = \\
& \sum_{k}\left(X_{n}=j \mid X_{0}=k\right) \mathbb{P}\left(X_{m}=k \mid X_{0}=i\right) .
\end{aligned}
$$

Interpretation: decomposition of the set of paths with length $n+m$ from i to j.

Problems

Finite horizon

- Estimation of $\pi(n)$
- Estimation of stopping times

$$
\tau_{A}=\inf \left\{n \geqslant 0 ; X_{n} \in A\right\}
$$

Infinite horizon

Convergence properties
Estimation of the asymptotics
Estimation speed of convergence

Problems

Finite horizon

- Estimation of $\pi(n)$
- Estimation of stopping times

$$
\tau_{A}=\inf \left\{n \geqslant 0 ; X_{n} \in A\right\}
$$

Infinite horizon

- Convergence properties
- Estimation of the asymptotics
- Estimation speed of convergence

Applications in computer science

Applications in most of scientific domains ..
In computer science :

Markov chain : an algorithmic tool

- Numerical methods (Monte-Carlo methods)
- Randomized algorithms (ex: TCP, searching, pageRank...)
- Learning machines (hidden Markov chains)
-. .

Markov chains : a modeling tool
Performance evaluation (quantification and dimensionning)
Stochastic control
Program verification

Applications in computer science

Applications in most of scientific domains ..
In computer science :

Markov chain : an algorithmic tool

- Numerical methods (Monte-Carlo methods)
- Randomized algorithms (ex: TCP, searching, pageRank...)
- Learning machines (hidden Markov chains)

Markov chains : a modeling tool

- Performance evaluation (quantification and dimensionning)
- Stochastic control
- Program verification

Nicholas Metropolis (1915-1999)

Nick Metropolis

Metropolis contributed several original ideas to mathematics and physics. Perhaps the most widely known is the Monte Carlo method. Also, in 1953
Metropolis co-authored the first paper on a technique that was central to the method known now as simulated annealing. He also developed an algorithm (the Metropolis algorithm or Metropolis-Hastings algorithm) for generating samples from the Boltzmann distribution, later generalized by W.K. Hastings.

Simulated annealing
Convergence to a global minimum by a stochastic gradient scheme.
$X_{n+1}=X_{n}-\operatorname{grad} \Phi\left(X_{n}\right) \Delta_{n}($ Random $)$
$\Delta_{n}($ random $) \xrightarrow{n \rightarrow \infty} 0$

Nicholas Metropolis (1915-1999)

Nick Metropolis
Metropolis contributed several original ideas to mathematics and physics. Perhaps the most widely known is the Monte Carlo method. Also, in 1953
Metropolis co-authored the first paper on a technique that was central to the method known now as simulated annealing. He also developed an algorithm (the Metropolis algorithm or Metropolis-Hastings algorithm) for generating samples from the Boltzmann distribution, later generalized by W.K. Hastings.

Simulated annealing

Convergence to a global minimum by a stochastic gradient scheme.

$$
X_{n+1}=X_{n}-\operatorname{grad} \Phi\left(X_{n}\right) \Delta_{n}(\text { Random })
$$

$$
\Delta_{n}(\text { random }) \xrightarrow{n \rightarrow \infty} 0 .
$$

Nicholas Metropolis (1915-1999)

Nick Metropolis
Metropolis contributed several original ideas to mathematics and physics. Perhaps the most widely known is the Monte Carlo method. Also, in 1953
Metropolis co-authored the first paper on a technique that was central to the method known now as simulated annealing. He also developed an algorithm (the Metropolis algorithm or Metropolis-Hastings algorithm) for generating samples from the Boltzmann distribution, later generalized by W.K. Hastings.

Simulated annealing

Convergence to a global minimum by a stochastic gradient scheme.

$$
X_{n+1}=X_{n}-\operatorname{grad} \Phi\left(X_{n}\right) \Delta_{n}(\text { Random })
$$

$$
\Delta_{n}(\text { random }) \xrightarrow{n \rightarrow \infty} 0 .
$$

Nicholas Metropolis (1915-1999)

Nick Metropolis
Metropolis contributed several original ideas to mathematics and physics. Perhaps the most widely known is the Monte Carlo method. Also, in 1953
Metropolis co-authored the first paper on a technique that was central to the method known now as simulated annealing. He also developed an algorithm (the Metropolis algorithm or Metropolis-Hastings algorithm) for generating samples from the Boltzmann distribution, later generalized by W.K. Hastings.

Simulated annealing

Convergence to a global minimum by a stochastic gradient scheme.

$$
X_{n+1}=X_{n}-\operatorname{grad} \Phi\left(X_{n}\right) \Delta_{n}(\text { Random })
$$

Nicholas Metropolis (1915-1999)

Nick Metropolis
Metropolis contributed several original ideas to mathematics and physics. Perhaps the most widely known is the Monte Carlo method. Also, in 1953
Metropolis co-authored the first paper on a technique that was central to the method known now as simulated annealing. He also developed an algorithm (the Metropolis algorithm or Metropolis-Hastings algorithm) for generating samples from the Boltzmann distribution, later generalized by W.K. Hastings.

Simulated annealing

Convergence to a global minimum by a stochastic gradient scheme.

$$
X_{n+1}=X_{n}-\operatorname{grad} \Phi\left(X_{n}\right) \Delta_{n}(\text { Random })
$$

Nicholas Metropolis (1915-1999)

Nick Metropolis
Metropolis contributed several original ideas to mathematics and physics. Perhaps the most widely known is the Monte Carlo method. Also, in 1953
Metropolis co-authored the first paper on a technique that was central to the method known now as simulated annealing. He also developed an algorithm (the Metropolis algorithm or Metropolis-Hastings algorithm) for generating samples from the Boltzmann distribution, later generalized by W.K. Hastings.

Simulated annealing

Convergence to a global minimum by a stochastic gradient scheme.

$$
X_{n+1}=X_{n}-\operatorname{grad} \Phi\left(X_{n}\right) \Delta_{n}(\text { Random })
$$

Nicholas Metropolis (1915-1999)

Nick Metropolis
Metropolis contributed several original ideas to mathematics and physics. Perhaps the most widely known is the Monte Carlo method. Also, in 1953
Metropolis co-authored the first paper on a technique that was central to the method known now as simulated annealing. He also developed an algorithm (the Metropolis algorithm or Metropolis-Hastings algorithm) for generating samples from the Boltzmann distribution, later generalized by W.K. Hastings.

Simulated annealing

Convergence to a global minimum by a stochastic gradient scheme.

$$
X_{n+1}=X_{n}-\operatorname{grad} \Phi\left(X_{n}\right) \Delta_{n}(\text { Random })
$$

$$
\Delta_{n}(\text { random }) \xrightarrow{n \rightarrow \infty} 0 .
$$

Nicholas Metropolis (1915-1999)

Nick Metropolis
Metropolis contributed several original ideas to mathematics and physics. Perhaps the most widely known is the Monte Carlo method. Also, in 1953
Metropolis co-authored the first paper on a technique that was central to the method known now as simulated annealing. He also developed an algorithm (the Metropolis algorithm or Metropolis-Hastings algorithm) for generating samples from the Boltzmann distribution, later generalized by W.K. Hastings.

Simulated annealing

Convergence to a global minimum by a stochastic gradient scheme.

$$
X_{n+1}=X_{n}-\operatorname{grad} \Phi\left(X_{n}\right) \Delta_{n}(\text { Random })
$$

$$
\Delta_{n}(\text { random }) \xrightarrow{n \rightarrow \infty} 0 .
$$

Nicholas Metropolis (1915-1999)

Nick Metropolis
Metropolis contributed several original ideas to mathematics and physics. Perhaps the most widely known is the Monte Carlo method. Also, in 1953
Metropolis co-authored the first paper on a technique that was central to the method known now as simulated annealing. He also developed an algorithm (the Metropolis algorithm or Metropolis-Hastings algorithm) for generating samples from the Boltzmann distribution, later generalized by W.K. Hastings.

Simulated annealing

Convergence to a global minimum by a stochastic gradient scheme.

$$
X_{n+1}=X_{n}-\operatorname{grad} \Phi\left(X_{n}\right) \Delta_{n}(\text { Random })
$$

$$
\Delta_{n}(\text { random }) \xrightarrow{n \rightarrow \infty} 0 .
$$

Nicholas Metropolis (1915-1999)

Nick Metropolis
Metropolis contributed several original ideas to mathematics and physics. Perhaps the most widely known is the Monte Carlo method. Also, in 1953
Metropolis co-authored the first paper on a technique that was central to the method known now as simulated annealing. He also developed an algorithm (the Metropolis algorithm or Metropolis-Hastings algorithm) for generating samples from the Boltzmann distribution, later generalized by W.K. Hastings.

Simulated annealing

Convergence to a global minimum by a stochastic gradient scheme.

$$
X_{n+1}=X_{n}-\operatorname{grad} \Phi\left(X_{n}\right) \Delta_{n}(\text { Random })
$$

$\Delta_{n}($ random $) \xrightarrow{n \rightarrow \infty} 0$.

Nicholas Metropolis (1915-1999)

Nick Metropolis
Metropolis contributed several original ideas to mathematics and physics. Perhaps the most widely known is the Monte Carlo method. Also, in 1953
Metropolis co-authored the first paper on a technique that was central to the method known now as simulated annealing. He also developed an algorithm (the Metropolis algorithm or Metropolis-Hastings algorithm) for generating samples from the Boltzmann distribution, later generalized by W.K. Hastings.

Simulated annealing

Convergence to a global minimum by a stochastic gradient scheme.

$$
X_{n+1}=X_{n}-\operatorname{grad} \Phi\left(X_{n}\right) \Delta_{n}(\text { Random })
$$

$\Delta_{n}($ random $) \xrightarrow{n \rightarrow \infty} 0$.

Modeling and Analysis of Computer Systems

Complex system

Basic model assumptions
System
automaton (discrete state space) discrete or continuous time Environment : non deterministic time homogeneous stochastically regular

Modeling and Analysis of Computer Systems

Complex system

Basic model assumptions

System
 automaton (discrete state space) discrete or continuous time Environment : non deterministic time homogeneous stochastically regular
 Problem
 Understand "typical" states steady-state estimation ergodic simulation state space exploring techniques

Modeling and Analysis of Computer Systems

Complex system

Basic model assumptions

System :

- automaton (discrete state space)
- discrete or continuous time

Environment : non deterministic

- time homogeneous
- stochastically regular

Problem
Understand "typical" states
steady-state estimation
ergodic simulation
state space exploring techniques

Modeling and Analysis of Computer Systems

Complex system

Basic model assumptions

System :

- automaton (discrete state space)
- discrete or continuous time

Environment : non deterministic

- time homogeneous
- stochastically regular

Problem

Understand "typical" states

- steady-state estimation
- ergodic simulation
- state space exploring techniques

Outline

(1) Markov Chain

(2) Formalisation
(3) Long run behavior

- Convergence
- Solving
- Simulation

4 Cache modeling
(5) Synthesis

States classification

Graph analysis

Irreducible class

Stronaly connected components
i and j are in the same component if there exist a path from i to j and a path from j to i with a positive probability
Leaves of the tree of strongly connected components are itreducthte classes
States in irreducible classes are called recurrent
Other states are called transient

Periodicity
An irreducible cle ss is aperiodic if the god
of length of all cycles is 1

A Markov chain is irreducible if there is only one class.
Each state is reachable from any other state with a positive probability path.

States classification

Graph analysis

Irreducible class

Strongly connected components i and j are in the same component if there exist a path from i to j and a path from j to i with a positive probability Leaves of the tree of strongly connected components are irreducible classes
States in irreducible classes are called recurrent
Other states are called transient
Periodicity
An irreducible cless is aperiodic if the god of length of all cycles is 1

A Markov chain is irreducible if there is only one class.
Each state is reachable from any other state with a positive probability path.

States classification

Graph analysis

Irreducible class

Strongly connected components i and j are in the same component if there exist a path from i to j and a path from j to i with a positive probability Leaves of the tree of strongly connected components are irreducible classes
States in irreducible classes are called recurrent
Other states are called transient

Periodicity

An irreducible class is aperiodic if the god of length of all cycles is 1

A Markov chain is irreducible if there is only one class.
Each state is reachable from any other state with a positive probability path.

States classification : matrix form

Automaton Flip-flop

ON-OFF system

Two states model :

- communication line
- processor activity
- ...

Parameters
proportion of transitions : p, q mean sojourn time in state 1 mean sojourn time in state $2: \frac{1}{a}$

Automaton Flip-flop

ON-OFF system

Two states model :

- communication line
- processor activity
- ...

Parameters:

- proportion of transitions : p, q
- mean sojourn time in state $1: \frac{1}{p}$
- mean sojourn time in state $2: \frac{1}{a}$

Trajectory
X_{n} state of the automaton at time n.

Transient distribution

Automaton Flip-flop

ON-OFF system

Two states model :

- communication line
- processor activity
- ...

Parameters :

- proportion of transitions : p, q
- mean sojourn time in state $1: \frac{1}{\rho}$
- mean sojourn time in state $2: \frac{1}{q}$

Trajectory

X_{n} state of the automaton at time n.
X

Transient distribution

$$
\begin{aligned}
& \pi_{n}(1)=\mathbb{P}\left(X_{n}=1\right) \\
& \pi_{n}(2)=\mathbb{P}\left(X_{n}=2\right)
\end{aligned}
$$

Automaton Flip-flop

ON-OFF system

Two states model :

- communication line
- processor activity
- ...

Parameters :

- proportion of transitions : p, q
- mean sojourn time in state $1: \frac{1}{\rho}$
- mean sojourn time in state $2: \frac{1}{q}$

Trajectory

X_{n} state of the automaton at time n.
X

Transient distribution

$$
\begin{aligned}
& \pi_{n}(1)=\mathbb{P}\left(X_{n}=1\right) \\
& \pi_{n}(2)=\mathbb{P}\left(X_{n}=2\right)
\end{aligned}
$$

Problem

Estimation of π_{n} : state prevision, resource utilization

Mathematical model

Transition probabilities

$$
\begin{aligned}
& P=\left[\begin{array}{cc}
1-p & p \\
q & 1-q
\end{array}\right] \\
& \mathbb{P}\left(X_{n+1}=1 \mid X_{n}=1\right)=1-p \\
& \mathbb{P}\left(X_{n+1}=2 \mid X_{n}=1\right)=p \\
& \mathbb{P}\left(X_{n+1}=1 \mid X_{n}=2\right)=q \\
& \mathbb{P}\left(X_{n+1}=2 \mid X_{n}=2\right)=1-q
\end{aligned}
$$

$$
\left\{\begin{array}{l}
\pi_{n+1}(1)=\pi_{n}(1)(1-p)+\pi_{n}(2) q \\
\pi_{n+1}(2)=\pi_{n}(1) p+\pi_{n}(2)(1-q)
\end{array}\right.
$$

Mathematical model

Transition probabilities

$$
\begin{gathered}
P=\left[\begin{array}{cc}
1-p & p \\
q & 1-q
\end{array}\right] \\
\mathbb{P}\left(X_{n+1}=1 \mid X_{n}=1\right)=1-p \\
\mathbb{P}\left(X_{n+1}=2 \mid X_{n}=1\right)=p \\
\mathbb{P}\left(X_{n+1}=1 \mid X_{n}=2\right)=q \\
\mathbb{P}\left(X_{n+1}=2 \mid X_{n}=2\right)=1-q \\
\left\{\begin{array}{c}
\pi_{n+1}(1)=\pi_{n}(1)(1-p)+\pi_{n}(2) q \\
\pi_{n+1}(2)=\pi_{n}(1) p+\pi_{n}(2)(1-q)
\end{array}\right. \\
\pi_{n+1}=\pi_{n} P
\end{gathered}
$$

Linear iterations
Spectrum of P (eigenvalues)
$\mathcal{S} p=\{1,1-p-q\}$

Mathematical model

Transition probabilities

$$
\begin{gathered}
P=\left[\begin{array}{cc}
1-p & p \\
q & 1-q
\end{array}\right] \\
\mathbb{P}\left(X_{n+1}=1 \mid X_{n}=1\right)=1-p \\
\mathbb{P}\left(X_{n+1}=2 \mid X_{n}=1\right)=p \\
\mathbb{P}\left(X_{n+1}=1 \mid X_{n}=2\right)=q \\
\mathbb{P}\left(X_{n+1}=2 \mid X_{n}=2\right)=1-q \\
\left\{\begin{array}{l}
\pi_{n+1}(1)=\pi_{n}(1)(1-p)+\pi_{n}(2) q \\
\pi_{n+1}(2)=\pi_{n}(1) p+\pi_{n}(2)(1-q)
\end{array}\right. \\
\pi_{n+1}=\pi_{n} P
\end{gathered}
$$

Linear iterations
Spectrum of P (eigenvalues)
$\mathcal{S} p=\{1,1-p-q\}$

System resolution

$|1-p-q|<1$ Non pathologic case

$$
\left\{\begin{array}{l}
\pi_{n}(1)=\frac{q}{p+q}+\left(\pi_{0}(1)-\frac{q}{p+q}\right)(1-p-q)^{n} \\
\pi_{n}(2)=\frac{p}{p+q}+\left(\pi_{0}(2)-\frac{p}{p+q}\right)(1-p-q)^{n}
\end{array}\right.
$$

Mathematical model

Transition probabilities

$$
\begin{aligned}
& P=\left[\begin{array}{cc}
1-p & p \\
q & 1-q
\end{array}\right] \\
& \mathbb{P}\left(X_{n+1}=1 \mid X_{n}=1\right)=1-p \\
& \mathbb{P}\left(X_{n+1}=2 \mid X_{n}=1\right)=p \\
& \mathbb{P}\left(X_{n+1}=1 \mid X_{n}=2\right)=q \\
& \mathbb{P}\left(X_{n+1}=2 \mid X_{n}=2\right)=1-q \\
& \left\{\begin{array}{l}
\pi_{n+1}(1)=\pi_{n}(1)(1-p)+\pi_{n}(2) q \\
\pi_{n+1}(2)=\pi_{n}(1) p+\pi_{n}(2)(1-q) \\
\pi_{n+1}=\pi_{n} P
\end{array}\right.
\end{aligned}
$$

Linear iterations
Spectrum of P (eigenvalues)
$\mathcal{S} p=\{1,1-p-q\}$

System resolution

$|1-p-q|<1$ Non pathologic case

$$
\left\{\begin{array}{l}
\pi_{n}(1)=\frac{q}{p+q}+\left(\pi_{0}(1)-\frac{q}{p+q}\right)(1-p-q)^{n} \\
\pi_{n}(2)=\frac{p}{p+q}+\left(\pi_{0}(2)-\frac{p}{p+q}\right)(1-p-q)^{n}
\end{array}\right.
$$

$1-p-q=1 p=q=0$ Reducible behavior

Mathematical model

Transition probabilities

$$
\begin{aligned}
& P=\left[\begin{array}{cc}
1-p & p \\
q & 1-q
\end{array}\right] \\
& \mathbb{P}\left(X_{n+1}=1 \mid X_{n}=1\right)=1-p \\
& \mathbb{P}\left(X_{n+1}=2 \mid X_{n}=1\right)=p \\
& \mathbb{P}\left(X_{n+1}=1 \mid X_{n}=2\right)=q \\
& \mathbb{P}\left(X_{n+1}=2 \mid X_{n}=2\right)=1-q
\end{aligned} \begin{gathered}
\left\{\begin{array}{c}
\pi_{n+1}(1)=\pi_{n}(1)(1-p)+\pi_{n}(2) q \\
\pi_{n+1}(2)=\pi_{n}(1) p+\pi_{n}(2)(1-q) \\
\pi_{n+1}=\pi_{n} P
\end{array}\right.
\end{gathered}
$$

Linear iterations
Spectrum of P (eigenvalues)
$\mathcal{S} p=\{1,1-p-q\}$

System resolution

$|1-p-q|<1$ Non pathologic case

$$
\left\{\begin{array}{l}
\pi_{n}(1)=\frac{q}{p+q}+\left(\pi_{0}(1)-\frac{q}{p+q}\right)(1-p-q)^{n} \\
\pi_{n}(2)=\frac{p}{p+q}+\left(\pi_{0}(2)-\frac{p}{p+q}\right)(1-p-q)^{n}
\end{array}\right.
$$

$1-p-q=1 p=q=0$ Reducible behavior

$1-p-q=-1 p=q=1$ Periodic behavior

Recurrent behavior

Numerical example

Rapid convergence (exponential rate)

Steady state behavior

π_{∞} unique probability vector solution
$\pi_{\infty}=\pi D$
If $\pi_{0}=\pi_{\infty}$ then $\pi_{n}=\pi_{\infty}$ for all n
stationary behavior

Recurrent behavior

Numerical example

Rapid convergence (exponential rate)

Steady state behavior

$$
\left\{\begin{array}{l}
\pi_{\infty}(1)=\frac{q}{p+q} ; \\
\pi_{\infty}(2)=\frac{p}{p+q} .
\end{array}\right.
$$

π_{∞} unique probability vector solution

$$
\pi_{\infty}=\pi_{\infty} P
$$

If $\pi_{0}=\pi_{\infty}$ then $\pi_{n}=\pi_{\infty}$ for all n stationary behavior

Convergence In Law

Let $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ a homogeneous, irreducible and aperiodic Markov chain taking values in a discrete state \mathcal{X} then

- The following limits exist (and do not depend on i)

$$
\lim _{n \rightarrow+\infty} \mathbb{P}\left(X_{n}=j \mid X_{0}=i\right)=\pi_{j}
$$

- π is the unique probability vector invariant by P

$$
\pi P=\pi
$$

- The convergence is rapid (geometric); there is $C>0$ and $0<\alpha<1$ such that

$$
\left\|\mathbb{P}\left(X_{n}=j \mid X_{0}=i\right)-\pi_{j}\right\| \leqslant C . \alpha^{n}
$$

Denote

$$
X_{n} \xrightarrow{\mathcal{L}} X_{\infty} ;
$$

with X_{∞} with law π
π is the steady-state probability associated to the chain

Interpretation

Equilibrium equation

Probability to enter $j=$ probability to exit j balance equation

$$
\sum_{i \neq j} \pi_{i} p_{i, j}=\sum_{k \neq j} \pi_{j} p_{j, k}=\pi_{j} \sum_{k \neq j} p_{j, k}=\pi_{j}\left(1-p_{j, j}\right)
$$

\qquad
If $\pi_{0}=\pi$ the process is stationary $\left(\pi_{n}=\pi\right)$

Interpretation

Equilibrium equation

Probability to enter $j=$ probability to exit j balance equation

$$
\sum_{i \neq j} \pi_{i} p_{i, j}=\sum_{k \neq j} \pi_{j} p_{j, k}=\pi_{j} \sum_{k \neq j} p_{j, k}=\pi_{j}\left(1-p_{j, j}\right)
$$

$\pi \stackrel{\text { def }}{=}$ steady-state.
If $\pi_{0}=\pi$ the process is stationary $\left(\pi_{n}=\pi\right)$

Interpretation

Equilibrium equation

Probability to enter $j=$ probability to exit j balance equation

$$
\sum_{i \neq j} \pi_{i} p_{i, j}=\sum_{k \neq j} \pi_{j} p_{j, k}=\pi_{j} \sum_{k \neq j} p_{j, k}=\pi_{j}\left(1-p_{j, j}\right)
$$

$\pi \stackrel{\text { def }}{=}$ steady-state.
If $\pi_{0}=\pi$ the process is stationary $\left(\pi_{n}=\pi\right)$

Proof 1 : Finite state space algebraic approach

Positive matrix $P>0$

contraction $\max _{i} p_{i, j}^{(n)}-\min _{i} p_{i, j}^{(n)}$

Perron-Froebenius $P>0$

P is positive and stochastic then the spectral radius $\rho=1$ is an eigenvalue with multiplicity 1 , the corresponding eigenvector is positive and the other eigenvalues have module <1.

Case $P \geqslant 0$

Aperiodique and irreducible \Rightarrow there is k such that $P^{k}>0$ and apply the above result.

Proof 1 : details $P>0$

Soit x et $y=P x, \omega=\min _{i, j} p_{i, j}$

$$
\begin{aligned}
& \bar{x}=\max _{i} x_{i}, \underline{x}=\min _{i} x_{i} . \\
& y_{i}=\sum_{j} p_{i, j} x_{j}
\end{aligned}
$$

Property of centroid :

$$
\begin{aligned}
& (1-\omega) \underline{x}+\omega \bar{x} \leqslant y_{i} \leqslant(1-\omega) \bar{x}+\omega \underline{x} \\
& 0 \leqslant \bar{y}-\underline{y} \leqslant(1-2 \omega)(\bar{x}-\underline{x}) \\
& P^{n} x \longrightarrow s(x)(1,1, \cdots, 1)^{t}
\end{aligned}
$$

Then P^{n} converges to a matrix where all lines are identical.

Proof 2 : Return time

$$
\tau_{i}^{+}=\inf \left\{n \geqslant 1 ; \quad X_{n}=i \mid X_{0}=i\right\} .
$$

then $\frac{1}{\mathbb{E} \tau_{i}^{+}}$is an invariant probability (Kac's lemma)

1914-1984

Proof :
(1) $\mathbb{E} \tau_{i}^{+}<\infty$
(2) Study on a regeneration interval (Strong Markov property)
(3) Uniqueness by harmonic functions

Proof 3 : Coupling

Let $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ a homogeneous aperiodic and irreducible Markov chain with initial law $\pi(0)$ and steady-state probability π.
Let $\left\{\tilde{X}_{n}\right\}_{n \in \mathbb{N}}$ another Markov chain $\tilde{\pi}(0)$ with the same transition matrix as $\left\{X_{n}\right\}$
$\left\{X_{n}\right\}$ et $\left\{\tilde{X}_{n}\right\}$ independent

- $Z_{n}=\left(X_{n}, \tilde{X}_{n}\right)$ is a homogeneous Markov chain
- if $\left\{X_{n}\right\}$ is aperiodic and irreducible, so it is for Z_{n}

Let τ be the hitting time of the diagonal, $\tau<\infty \mathrm{P}$-a.s. then

$$
\begin{aligned}
& \left|\mathbb{P}\left(X_{n}=i\right)-\mathbb{P}\left(\tilde{X}_{n}=i\right)\right|<2 \mathbb{P}(\tau>n) \\
& \left|\mathbb{P}\left(X_{n}=i\right)-\pi(i)\right|<2 \mathbb{P}(\tau>n) \longrightarrow 0
\end{aligned}
$$

Ergodic Theorem

Let $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ a homogeneous aperiodic and irreducible Markov chain on \mathcal{X} with steady-state probability π then

- for all function f satisfying $\mathbb{E}_{\pi}|f|<+\infty$

$$
\frac{1}{N} \sum_{n=1}^{N} f\left(X_{n}\right) \xrightarrow{P-p . s .} \mathbb{E}_{\pi} f .
$$

generalization of the strong law of large numbers

- If $\mathbb{E}_{\pi} f=0$ then there exist σ such that

$$
\frac{1}{\sigma \sqrt{N}} \sum_{n=1}^{N} f\left(X_{n}\right) \xrightarrow{\mathcal{L}} \mathcal{N}(0,1) .
$$

generalization of the central limit theorem

Fundamental question

Given a function f (cost, reward, performance,...) estimate
$\mathbb{E}_{\pi} f$
and give the quality of this estimation.

Solving methods

Solving $\pi=\pi P$

- Analytical/approximation methods
- Formal methods $N \leqslant 50$ Maple, Sage,...
- Direct numerical methods $N \leqslant 1000$ Mathematica, Scilab,...
- Iterative methods with preconditioning $N \leqslant 100,000$ Marca,...
- Adapted methods (structured Markov chains) $N \leqslant 1,000,000$ PEPS,...
- Monte-Carlo simulation $N \geqslant 10^{7}$

Postprocessing of the stationary distribution

Computation of rewards (expected stationary functions) Utilization, response time,...

Ergodic Sampling(1)

Ergodic sampling algorithm

Representation : transition fonction

$$
X_{n+1}=\Phi\left(X_{n}, e_{n+1}\right) .
$$

$x \leftarrow x_{0}$
\{choice of the initial state at time $=0$ \}
$n=0$;
repeat
$n \leftarrow n+1 ;$
$e \leftarrow$ Random_event();
$x \leftarrow \Phi(x, e)$;
Store x
\{computation of the next state X_{n+1} \}
until some empirical criteria
return the trajectory
Problem : Stopping criteria

Ergodic Sampling(2)

Start-up

Convergence to stationary behavior

$$
\lim _{n \rightarrow+\infty} \mathbb{P}\left(X_{n}=x\right)=\pi_{x}
$$

Warm-up period : Avoid initial state dependence Estimation error :

$$
\left\|\mathbb{P}\left(X_{n}=x\right)-\pi_{x}\right\| \leqslant C \lambda_{2}^{n} .
$$

λ_{2} second greatest eigenvalue of the transition matrix

- bounds on C and λ_{2} (spectral gap)
- cut-off phenomena
λ_{2} and C non reachable in practice (complexity equivalent to the computation of π) some known results (Birth and Death processes)

Ergodic Sampling(3)

Estimation quality

Ergodic theorem :

$$
\lim _{n \rightarrow+\infty} \frac{1}{n} \sum_{i=1}^{n} f\left(X_{i}\right)=\mathbb{E}_{\pi} f
$$

Length of the sampling : Error control (CLT theorem)

Complexity

Complexity of the transition function evaluation (computation of $\Phi(x,$.$))$ Related to the stabilization period + Estimation time

Ergodic sampling(4)

Typical trajectory

Replication Method

Typical trajectory

Sample of independent states Drawback : length of the replication period (dependence from initial state)

Regeneration Method

Typical trajectory

Sample of independent trajectories
Drawback : length of the regeneration period (choice of the regenerative state)

Outline

(1) Markov Chain
(2) Formalisation
(3) Long run behavior

4 Cache modeling
(5) Synthesis

Cache modelling

Virtual memory

Paging in OS

- cache hierarchy (processor)
- data caches (databases)
- proxy-web (internet)
- routing tables (networking)

State of the system : Page position
Huge number of pages, small memory capacity

Move-to-front strategy
Least recently used (LRU)

Cache modelling

Virtual memory

Paging in OS

- cache hierarchy (processor)
- data caches (databases)
- proxy-web (internet)
- routing tables (networking)

State of the system : Page position
Huge number of pages, small memory capacity

Move-to-front strategy

Least recently used (LRU)

Move-ahead strategy

Ranking algorithm

Cache modelling

Virtual memory

Paging in OS

- cache hierarchy (processor)
- data caches (databases)
- proxy-web (internet)
- routing tables (networking)

State of the system : Page position
Huge number of pages, small memory capacity

Move-to-front strategy

Least recently used (LRU)

	Virtual memory								
	Memory			Disque					
Adress	1	2	3	4	5	6	7	8	State
Pages	P_{3}	P_{7}	P_{2}	P_{6}	P_{5}	P_{1}	P_{8}	P_{4}	E
Pages	P_{5}	P_{3}	P_{7}	P_{2}	P_{6}	P_{1}	P_{8}	P_{4}	E_{1}

Move-ahead strategy

Ranking algorithm

	Virtual memory								
	Memory				Disk				
Adress	1	2	3	4	5	7	8	State	
Pages	P_{3}	P_{7}	P_{2}	P_{6}	P_{5}	P_{1}	P_{8}	P_{4}	E
Pages	P_{3}	P_{7}	P_{2}	P_{5}	P_{6}	P_{1}	P_{8}	P_{4}	E_{2}

Cache modelling

Virtual memory

Paging in OS

- cache hierarchy (processor)
- data caches (databases)
- proxy-web (internet)
- routing tables (networking)

State of the system : Page position
Huge number of pages, small memory capacity

Move-to-front strategy

Least recently used (LRU)

	Virtual memory								
	Memory			Disque					
Adress	1	2	3	4	5	6	7	8	State
Pages	P_{3}	P_{7}	P_{2}	P_{6}	P_{5}	P_{1}	P_{8}	P_{4}	E
Pages	P_{5}	P_{3}	P_{7}	P_{2}	P_{6}	P_{1}	P_{8}	P_{4}	E_{1}

Move-ahead strategy

Ranking algorithm

	Virtual memory								
	Memory			Disk					
Adress	1	2	3	4	5	6	7	8	State
Pages	P_{3}	P_{7}	P_{2}	P_{6}	P_{5}	P_{1}	P_{8}	P_{4}	E
Pages	P_{3}	P_{7}	P_{2}	P_{5}	P_{6}	P_{1}	P_{8}	P_{4}	E_{2}

Problem

Performance : mean response time (memory access << disk access) Choose the strategy that achieves the best long-term performance

Modelling

```
State of the system
N = number of pages
State = permutation of
{1,\cdots,N}
Size of the state space = N!
\Longrightarrow \text { numerically untractable}
Example : Linux system
    Size of page = 4kb
    - Memory size = 1Gb
    - Swap disk size = 1Gb
    Size of the state space =
    500000!
    exercise : compute the order
    of magnitude
```


Modelling

State of the system

N = number of pages
State $=$ permutation of
$\{1, \cdots, N\}$
Size of the state space $=N$!
\Longrightarrow numerically untractable

Example : Linux system

- Size of page $=4 k b$
- Memory size $=1$ Gb
- Swap disk size = 1Gb Size of the state space = 500000!
exercise : compute the order of magnitude

Flow modelling
Requests are random
Request have the same probability distributions Requests are stochastically independent random sequence of i.i.d. requests

Modelling

State of the system

N = number of pages
State $=$ permutation of
$\{1, \cdots, N\}$
Size of the state space $=N$!
\Longrightarrow numerically untractable

Example : Linux system

- Size of page $=4 k b$
- Memory size = 1 Gb
- Swap disk size = 1Gb Size of the state space $=$ 500000!
exercise : compute the order of magnitude

Flow modelling

Requests are random
Request have the same probability distributions Requests are stochastically independent $\left\{R_{n}\right\}_{n \in \mathbb{N}}$ random sequence of i.i.d. requests

State space reduction

$P_{\text {A }}=$ More frequent nage
All other pages have the same frequency.

Modelling

State of the system

N = number of pages
State $=$ permutation of
$\{1, \cdots, N\}$
Size of the state space $=N$!
\Longrightarrow numerically untractable

Example : Linux system

- Size of page $=4 k b$
- Memory size = 1 Gb
- Swap disk size = 1Gb

Size of the state space $=$ 500000!
exercise : compute the order of magnitude

Flow modelling

Requests are random
Request have the same probability distributions
Requests are stochastically independent
$\left\{R_{n}\right\}_{n \in \mathbb{N}}$ random sequence of i.i.d. requests

State space reduction

$P_{A}=$ More frequent page
All other pages have the same frequency.

$$
\begin{aligned}
& a=\mathbb{P}\left(R_{n}=P_{A}\right), \quad b=\mathbb{P}\left(R_{n}=P_{i}\right), \\
& a>b, \quad a+(N-1) b=1 .
\end{aligned}
$$

$\left\{X_{n}\right\}_{n \in \mathbb{N}}$ position of page P_{A} at time n.
State space $=\{1, \cdots, N\}$ (size reduction)
Markov chain (state dependent policy)

Move to front analysis

Markov chain graph

Transition matrix

Move to front analysis

Markov chain graph

Transition matrix

Example

$\left[\begin{array}{cccccc}a & (N-1) b & 0 & \cdots & \cdots & 0 \\ a & b & (N-2) b & \ddots & & \vdots \\ \vdots & 0 & 2 b & (N-3) b & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & 0 \\ \vdots & \vdots & & \ddots & (N-2) b & b \\ a & 0 & \cdots & \cdots & 0 & (N-1) b\end{array}\right]$

Move to front analysis

Markov chain graph

Transition matrix

$\left[\begin{array}{cccccc}a & (N-1) b & 0 & \cdots & \cdots & 0 \\ a & b & (N-2) b & \ddots & & \vdots \\ \vdots & 0 & 2 b & (N-3) b & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & 0 \\ \vdots & \vdots & & \ddots & (N-2) b & b \\ a & 0 & \cdots & \cdots & 0 & (N-1) b\end{array}\right]$

Example

$$
N=8, a=0.3 \text { and } b=0.1
$$

$$
\pi=\left[\begin{array}{l}
0.30 \\
0.23 \\
0.18 \\
0.12 \\
0.08 \\
0.05 \\
0.03 \\
0.01
\end{array}\right]
$$

Move ahead analysis

Markov chain graph

Transition matrix

Move ahead analysis

Markov chain graph

Transition matrix

$\left[\begin{array}{cccccc}a+(N-2) b & b & 0 & \cdots & \cdots & 0 \\ a & (N-2) b & b & \ddots & & \vdots \\ 0 & a & (N-2) b & b & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & \vdots & \ddots & \ddots & (N-2) b & b \\ 0 & 0 & \cdots & 0 & a & (N-1) b\end{array}\right]$

Example

Move ahead analysis

Markov chain graph

Transition matrix

$\left[\begin{array}{cccccc}a+(N-2) b & b & 0 & \cdots & \cdots & 0 \\ a & (N-2) b & b & \ddots & & \vdots \\ 0 & a & (N-2) b & b & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & \vdots & \ddots & \ddots & (N-2) b & b \\ 0 & 0 & \cdots & 0 & a & (N-1) b\end{array}\right]$

Example

$$
N=8, a=0.3 \text { and } b=0.1
$$

$$
\pi=\left[\begin{array}{l}
0.67 \\
0.22 \\
0.07 \\
0.02 \\
0.01 \\
0.01 \\
0.00 \\
0.00
\end{array}\right]
$$

Performances

Steady state

$M F=\left[\begin{array}{l}0.30 \\ 0.23 \\ 0.18 \\ 0.12 \\ 0.08 \\ 0.05 \\ 0.03 \\ 0.01\end{array}\right] M A=\left[\begin{array}{l}0.67 \\ 0.22 \\ 0.07 \\ 0.02 \\ 0.01 \\ 0.01 \\ 0.00 \\ 0.00\end{array}\right]$

Move to front

$$
\pi(i)=\frac{(N-1-i) \cdots(N-2)(N-1) b^{i-1}}{(a+(N-i) b) \cdots(a+(N-2) b)(a+(N-1) b)} \pi_{1} .
$$

Move ahead

$$
\pi_{i}=\left(\frac{b}{a}\right)^{i-1} \frac{1-\frac{b}{a}}{1-\left(\frac{b}{a}\right)^{N}}
$$

Cache miss

Memory size	Move to tront	Move Ahead
0	1.00	1.00
1	0.70	0.33
2	0.47	0.11
3	0.28	0.04
4	0.17	0.02
5	0.09	0.01
6	0.04	0.00
7	0.01	0.00
8	0.00	0.00

Best strategy

 Move ahead
Performances

Steady state

$M F=\left[\begin{array}{l}0.30 \\ 0.23 \\ 0.18 \\ 0.12 \\ 0.08 \\ 0.05 \\ 0.03 \\ 0.01\end{array}\right] M A=\left[\begin{array}{l}0.67 \\ 0.22 \\ 0.07 \\ 0.02 \\ 0.01 \\ 0.01 \\ 0.00 \\ 0.00\end{array}\right]$

Move to front

$$
\pi(i)=\frac{(N-1-i) \cdots(N-2)(N-1) b^{i-1}}{(a+(N-i) b) \cdots(a+(N-2) b)(a+(N-1) b)} \pi_{1} .
$$

Move ahead

$$
\pi_{i}=\left(\frac{b}{a}\right)^{i-1} \frac{1-\frac{b}{a}}{1-\left(\frac{b}{a}\right)^{N}} .
$$

Cache miss

Memory size	Move to front	Move Ahead
0	1.00	1.00
1	0.70	0.33
2	0.47	0.11
3	0.28	0.04
4	0.17	0.02
5	0.09	0.01
6	0.04	0.00
7	0.01	0.00
8	0.00	0.00

Best strategy Move ahead

Performances

Steady state

$M F=\left[\begin{array}{l}0.30 \\ 0.23 \\ 0.18 \\ 0.12 \\ 0.08 \\ 0.05 \\ 0.03 \\ 0.01\end{array}\right] M A=\left[\begin{array}{l}0.67 \\ 0.22 \\ 0.07 \\ 0.02 \\ 0.01 \\ 0.01 \\ 0.00 \\ 0.00\end{array}\right]$

Move to front

$$
\pi(i)=\frac{(N-1-i) \cdots(N-2)(N-1) b^{i-1}}{(a+(N-i) b) \cdots(a+(N-2) b)(a+(N-1) b)} \pi_{1} .
$$

Move ahead

$$
\pi_{i}=\left(\frac{b}{a}\right)^{i-1} \frac{1-\frac{b}{a}}{1-\left(\frac{b}{a}\right)^{N}} .
$$

Cache miss

Memory size	Move to front	Move Ahead
0	1.00	1.00
1	0.70	0.33
2	0.47	0.11
3	0.28	0.04
4	0.17	0.02
5	0.09	0.01
6	0.04	0.00
7	0.01	0.00
8	0.00	0.00

Best strategy : Move ahead

Self-ordering protocol : decreasing probability
Convergence speed to steady state
Move to front : 0.7^{n} Move ahead : 0.92^{n}
Tradeoff between "stabilization" and long term performance
Depends on the input flow of requests

Performances

Steady state

$M F=\left[\begin{array}{l}0.30 \\ 0.23 \\ 0.18 \\ 0.12 \\ 0.08 \\ 0.05 \\ 0.03 \\ 0.01\end{array}\right] M A=\left[\begin{array}{l}0.67 \\ 0.22 \\ 0.07 \\ 0.02 \\ 0.01 \\ 0.01 \\ 0.00 \\ 0.00\end{array}\right]$

Move to front

$$
\pi(i)=\frac{(N-1-i) \cdots(N-2)(N-1) b^{i-1}}{(a+(N-i) b) \cdots(a+(N-2) b)(a+(N-1) b)} \pi_{1} .
$$

Move ahead
$\pi_{i}=\left(\frac{b}{a}\right)^{i-1} \frac{1-\frac{b}{a}}{1-\left(\frac{b}{a}\right)^{N}}$.

Cache miss

Memory size	Move to front	Move Ahead
0	1.00	1.00
1	0.70	0.33
2	0.47	0.11
3	0.28	0.04
4	0.17	0.02
5	0.09	0.01
6	0.04	0.00
7	0.01	0.00
8	0.00	0.00

Best strategy : Move ahead

Comments

Self-ordering protocol : decreasing probability Convergence speed to steady state :
Move to front: 0.7^{n} Move ahead : 0.92^{n}
Tradeoff between "stabilization" and long term performance Depends on the input flow of requests

Outline

(1) Markov Chain
(2) Formalisation
(3) Long run behavior

4 Cache modeling
(5) Synthesis

Synthesis : Modelling and Performance

Methodology

(1) Identify states of the system
(2) Estimate transition parameters, build the Markov chain (verify properties)
(3) Specify performances as a function of steady-state
(4) Compute steady-state distribution and steady-state performance
(5) Analyse performances as a function of input parameters

Classical methods to compute the steady state

A Analytical formulae: structure of the Markov chain (closed form)
(2) Formal computation $(N<50)$
(3) Direct numerical computation (classical linear algebra kernels) $(N<1000)$
© Iterative numerical computation (classical linear algebra kernels) $(N<100.000)$
(5) Model adapted numerical computation ($N<10.000 .000$)
(6) Simulation of random trajectories (sampling)

Synthesis : Modelling and Performance

Methodology

(1) Identify states of the system
(2) Estimate transition parameters, build the Markov chain (verify properties)
(3) Specify performances as a function of steady-state
(4) Compute steady-state distribution and steady-state performance
(6) Analyse performances as a function of input parameters

Classical methods to compute the steady state

(1) Analytical formulae : structure of the Markov chain (closed form)
(2) Formal computation $(N<50)$
(3) Direct numerical computation (classical linear algebra kernels) $(N<1000)$
(4) Iterative numerical computation (classical linear algebra kernels) $(N<100.000)$
(5) Model adapted numerical computation ($N<10.000 .000$)
(6) Simulation of random trajectories (sampling)

Bibliography

Books

- O. Haggstrom. Finite Markov Chains and algorithmic applications. Cambridge University Press. 2001.
- P. Brémaud Markov chains: Gibbs fields, Monte Carlo Simulation and Queues. Springer-Verlag, 1999
- D. A. Levin, Y. Peres, et E. L. Wilmer Markov Chains and Mixing Times, American Mathematical Society,2009.

Websites

- Virtual Laboratories in Probability and Statistics http://www.math.uah.edu/stat/index.xhtml
- The MacTutor History of Mathematics archive (photos) http://www-history.mcs.st-and.ac.uk/

