55 years of hand-crafted features

The traditional model of pattern recognition (since the late 50's)
- Fixed/engineered features (or fixed kernel) + trainable classifier

Perceptron
“Classic” architecture for pattern recognition

- Speech recognition: 1990-2011
- Object Recognition: 2005-2012
- Handwriting recognition (long ago)
- Graphical model has latent variables (locations of parts)

```
fixed  unsupervised  fixed  supervised  fixed
MFCC   Gaussians   Pooling  (linear)  Graphical
SIFT, HoG  K-Means  Coding  Classifier  Model
Cuboids
Low-level Features
Mid-level Features
parts, phones, characters
Object, Utterance, word
```
"Deep" architecture for pattern recognition

- Speech, and Object recognition: since 2011/2012
- Handwriting recognition: since the early 1990s
- Convolutional Net with optional Graphical Model on top
- Trained purely supervised
- Graphical model has latent variables (locations of parts)
Globally-trained deep architecture

- Handwriting recognition: since the mid 1990s
- Speech Recognition: since 2011
- All the modules are trained with a combination of unsupervised and supervised learning
- \textbf{End-to-end training} == deep structured prediction
Deep Learning = Learning Hierarchical Representations

It's deep if it has more than one stage of non-linear feature transformation.

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]
* Y LeCun

Trainable Feature Hierarchy

- Hierarchy of representations with increasing level of abstraction
- Each stage is a kind of trainable feature transform
- Image recognition
 - Pixel → edge → texton → motif → part → object
- Text
 - Character → word → word group → clause → sentence → story
- Speech
 - Sample → spectral band → sound → ... → phone → phoneme → word

[Diagram of trainable feature hierarchy with steps described in the text]
How do we learn representations of the perceptual world?
- How can a perceptual system build itself by looking at the world?
- How much prior structure is necessary

ML/AI: how do we learn features or feature hierarchies?
- What is the fundamental principle? What is the learning algorithm? What is the architecture?

Neuroscience: how does the cortex learn perception?
- Does the cortex “run” a single, general learning algorithm? (or a small number of them)

CogSci: how does the mind learn abstract concepts on top of less abstract ones?

Deep Learning addresses the problem of learning hierarchical representations with a single algorithm
- or perhaps with a few algorithms
The Mammalian Visual Cortex is Hierarchical

- The ventral (recognition) pathway in the visual cortex has multiple stages:
 - Retina - LGN - V1 - V2 - V4 - PIT - AIT

- Lots of intermediate representations

[picture from Simon Thorpe]

[picture from Gallant & Van Essen]
Ventral pathway = “what”
Dorsal pathway = “where”
It's hierarchical
There is feedback
There is motion processing
Learning is mostly unsupervised
It does recognition, localization, navigation, grasping.....

[Gallant & Van Essen]
Let's be inspired by nature, but not too much

- It's nice to imitate Nature,
- But we also need to understand:
 - How do we know which details are important?
 - Which details are merely the result of evolution, and the constraints of biochemistry?
- For airplanes, we developed aerodynamics and compressible fluid dynamics.
 - We figured that feathers and wing flapping weren't crucial.

QUESTION: What is the equivalent of aerodynamics for understanding intelligence?

L'Avion III de Clément Ader, 1897
(Musée du CNAM, Paris)
His “Eole” took off from the ground in 1890, 13 years before the Wright Brothers, but you probably never heard of it (unless you are French).
Shallow vs Deep == lookup table vs multi-step algorithm

- "shallow & wide" vs "deep and narrow" == "more memory" vs "more time"
- Look-up table vs algorithm
- Few functions can be computed in two steps without an exponentially large lookup table
- Using more than 2 steps can reduce the "memory" by an exponential factor.
2-layer models are not deep (even if you train the first layer)
- Because there is no feature hierarchy

Neural nets with 1 hidden layer are not deep
- Layer 1: kernels; layer 2: linear
- The first layer is “trained” in with the simplest unsupervised method ever devised: using the samples as templates for the kernel functions.
- “glorified template matching”

SVMs and Kernel methods are not deep
- Layer 1: kernels; layer 2: linear
- The first layer is “trained” in with the simplest unsupervised method ever devised: using the samples as templates for the kernel functions.
- “glorified template matching”

Classification trees are not deep
- No hierarchy of features. All decisions are made in the input space
What Are Good Feature?
Basic Idea for Invariant Feature Learning

- **Embed the input non-linearly into a high(er) dimensional space**
 - In the new space, things that were non separable may become separable

- **Pool regions of the new space together**
 - Bringing together things that are semantically similar. Like pooling.

Input → Non-Linear Function → Pooling Or Aggregation → Stable/invariant features

high-dim Unstable/non-smooth features
Sparse Non-Linear Expansion → Pooling

- Use clustering to break things apart, pool together similar things

Clustering, Quantization, Sparse Coding → Pooling, Aggregation
Overall Architecture: multiple stages of Normalization → Filter Bank → Non-Linearity → Pooling

- **Normalization**: variation on whitening (optional)
 - Subtractive: average removal, high pass filtering
 - Divisive: local contrast normalization, variance normalization

- **Filter Bank**: dimension expansion, projection on overcomplete basis

- **Non-Linearity**: sparsification, saturation, lateral inhibition....
 - Rectification (ReLU), Component-wise shrinkage, tanh,..
 \[
 ReLU(x) = \max(x, 0)
 \]

- **Pooling**: aggregation over space or feature type
 - Max, Lp norm, log prob.
 \[
 MAX : \max_i(X_i); \quad L_p : \sqrt[p]{X_i^p}; \quad PROB : \frac{1}{b} \log\left(\sum_i e^{bX_i}\right)
 \]
Deep Nets with ReLUs and Max Pooling

- Stack of linear transforms interspersed with Max operators
- Point-wise ReLUs:

\[\text{ReLU}(x) = \max(x, 0) \]

Max Pooling

“switches” from one layer to the next
To compute all the derivatives, we use a backward sweep called the back-propagation algorithm that uses the recurrence equation for $\frac{\partial E}{\partial X_i}$

\[\frac{\partial E}{\partial X_n} = \frac{\partial C(X_n,Y)}{\partial X_n} \]
\[\frac{\partial E}{\partial X_{n-1}} = \frac{\partial E}{\partial X_n} \frac{\partial F_n(X_{n-1},W_n)}{\partial X_{n-1}} \]
\[\frac{\partial E}{\partial W_n} = \frac{\partial E}{\partial X_n} \frac{\partial F_n(X_{n-1},W_n)}{\partial W_n} \]
\[\frac{\partial E}{\partial X_{n-2}} = \frac{\partial E}{\partial X_{n-1}} \frac{\partial F_{n-1}(X_{n-2},W_{n-1})}{\partial X_{n-2}} \]
\[\frac{\partial E}{\partial W_{n-1}} = \frac{\partial E}{\partial X_{n-1}} \frac{\partial F_{n-1}(X_{n-2},W_{n-1})}{\partial W_{n-1}} \]

... etc, until we reach the first module.

we now have all the $\frac{\partial E}{\partial W_i}$ for $i \in [1, n]$.
1-1-1 network
- $Y = W1*W2*X$

trained to compute the identity function with quadratic loss
- Single sample $X=1$, $Y=1$ $L(W) = (1-W1*W2)^2$
Deep Nets with ReLUs

Single output:

\[\hat{Y} = \sum_P \delta_P(W, X) \left(\prod_{(ij) \in P} W_{ij} \right) X_{P_{\text{start}}} \]

- \(W_{ij} \): weight from j to i
- \(P \): path in network from input to output
 - \(P = (3, (14, 3), (22, 14), (31, 22)) \)
- \(d_i \): 1 if ReLU i is linear, 0 if saturated.
- \(X_{P_{\text{start}}} \): input unit for path P.

\[\hat{Y} = \sum_P \delta_P(W, X) \left(\prod_{(ij) \in P} W_{ij} \right) X_{P_{\text{start}}} \]

- \(D_p(W, X) \): 1 if path P is “active”, 0 if inactive
- Input-output function is piece-wise linear
- Polynomial in W with random coefficients
Deep Convolutional Nets (and other deep neural nets)

Training sample: \((X_i, Y_i)\) \(k=1\) to \(K\)

Objective function (with margin-type loss = ReLU)

\[
L(W) = \sum_k \text{ReLU} \left(1 - Y^k \sum_P \delta_P(W, X^k) \left(\prod_{(ij) \in P} W_{ij} \right) X_{P_{start}}^k \right)
\]

\[
L(W) = \sum_k \sum_P \left(X_{P_{start}}^k Y^k \right) \delta_P(W, X^k) \left(\prod_{(ij) \in P} W_{ij} \right)
\]

\[
L(W) = \sum_P \left[\sum_k \left(X_{P_{start}}^k Y^k \right) \delta_P(W, X^k) \right] \left(\prod_{(ij) \in P} W_{ij} \right)
\]

\[
L(W) = \sum_P C_p(X, Y, W) \left(\prod_{(ij) \in P} W_{ij} \right)
\]

Polynomial in \(W\) of degree \(l\) (number of adaptive layers)

Continuous, piece-wise polynomial with “switched” and partially random coefficients

Coefficients are switched in and out depending on \(W\)
Deep Nets with ReLUs: Objective Function is Piecewise Polynomial

If we use a hinge loss, delta now depends on label Y_k:

$$L(W) = \sum_P C_p(X, Y, W)(\prod_{(ij) \in P} W_{ij})$$

Piecewise polynomial in W with random coefficients

A lot is known about the distribution of critical points of polynomials on the sphere with random (Gaussian) coefficients [Ben Arous et al.]

- High-order spherical spin glasses
- Random matrix theory

Histogram of minima
Train 2-layer nets on scaled-down MNIST (10x10) from multiple initial conditions. Measure loss on test set.

[Choromanska, Henaff, Mathieu, Ben Arous, LeCun 2015]
Spherical Spin Glass theory

Distribution of critical points (saddle points, minima, maxima)

- K = number of negative eigenvalues of Hessian ($K=0 \rightarrow$ minimum)

- $x \times 10^{151}$

- Critical Points

- Mean number of critical points

- Mean number of low-index critical points

- Zoomed:
Convolutional Networks
Convolutional Network

[LeCun et al. NIPS 1989]
[Hubel & Wiesel 1962]:
- **simple cells** detect local features
- **complex cells** “pool” the outputs of simple cells within a retinotopic neighborhood.

Cognitron & Neocognitron [Fukushima 1974-1982]
The Convolutional Net Model
(Multistage Hubel-Wiesel system)

Training is supervised
With stochastic gradient descent

[LeCun et al. 89]
[LeCun et al. 98]
Convolutional Network (ConvNet)

Non-Linearity: half-wave rectification (ReLU), shrinkage function, sigmoid
Pooling: max, average, L1, L2, log-sum-exp
Convolutional Network (vintage 1990)

filters → tanh → average-tanh → filters → tanh → average-tanh → filters → tanh

Curved manifold

Flatter manifold
LeNet1 Demo from 1993

Running on a 486 PC with an AT&T DSP32C add-on board (20 Mflops!)
“Mainstream” object recognition pipeline 2006-2012: somewhat similar to ConvNets

Fixed Features + unsupervised mid-level features + simple classifier

- SIFT + Vector Quantization + Pyramid pooling + SVM
 - [Lazebnik et al. CVPR 2006]
- SIFT + Local Sparse Coding Macrofeatures + Pyramid pooling + SVM
 - [Boureau et al. ICCV 2011]
- SIFT + Fisher Vectors + Deformable Parts Pooling + SVM
 - [Perronin et al. 2012]
Global (end-to-end) Training. Integrating Deep Learning with Structured Prediction. Energy-Based Models

Making every single module in the system trainable.

Every module is trained simultaneously so as to optimize a global loss function.

Includes the feature extractor, the recognizer, and the contextual post-processor (graphical model).

Problem: back-propagating gradients through the graphical model.
Highly popular methods in the Machine Learning and Natural Language Processing Communities have their roots in Speech and Handwriting Recognition

- Structured Perceptron, Conditional Random Fields, and related learning models for “structured prediction” are descendants of discriminative learning methods for speech recognition and word-level handwriting recognition methods from the early 90's

A Tutorial and Energy-Based Learning:

- [LeCun & al., 2006]

Discriminative Training for “Structured Output” models

- The whole literature on discriminative speech recognition [1987-]
- Graph Transformer Networks [LeCun & al. Proc IEEE 1998]
- Structured Perceptron [Collins 2001]
- Conditional Random Fields [Lafferty & al 2001]
Energy-Based Models for Decision Making

- **Model:** Measures the compatibility between an observed variable X and a variable to be predicted Y through an energy function $E(Y,X)$.

\[Y^* = \arg\min_{Y \in \mathcal{Y}} E(Y, X). \]

- **Inference:** Search for the Y that minimizes the energy within a set \mathcal{Y}. If the set has low cardinality, we can use exhaustive search.
When the cardinality or dimension of Y is large, exhaustive search is impractical. We need to use “smart” inference procedures: min-sum, Viterbi, min cut, belief propagation, gradient decent....
Converting Energies to Probabilities

Energies are uncalibrated
- The energies of two separately-trained systems cannot be combined
- The energies are uncalibrated (measured in arbitrary units)

How do we calibrate energies?
- We turn them into probabilities (positive numbers that sum to 1).
 - Simplest way: Gibbs distribution
 - Other ways can be reduced to Gibbs by a suitable redefinition of the energy.

\[
P(Y|X) = \frac{e^{-\beta E(Y,X)}}{\int_{y \in \mathcal{Y}} e^{-\beta E(y,X)}}
\]

Partition function Inverse temperature
Deep Learning systems can be assembled into factor graphs

- Energy function is a sum of factors
- Factors can embed whole deep learning systems
- X: observed variables (inputs)
- Z: never observed (latent variables)
- Y: observed on training set (output variables)

Inference is energy minimization (MAP) or free energy minimization (marginalization) over Z and Y given an X
Deep Learning systems can be assembled into factor graphs

- Energy function is a sum of factors
- Factors can embed whole deep learning systems
- X: observed variables (inputs)
- Z: never observed (latent variables)
- Y: observed on training set (output variables)

Inference is energy minimization (MAP) or free energy minimization (marginalization) over Z and Y given an X

- $F(X,Y) = \text{MIN}_z E(X,Y,Z)$
- $F(X,Y) = -\log \text{SUM}_z \exp[-E(X,Y,Z)]$
integrated segmentation and recognition of sequences.
Each segmentation and recognition hypothesis is a path in a graph inference = finding the shortest path in the interpretation graph.

Un-normalized hierarchical HMMs a.k.a. Graph Transformer Networks
Example of Latent Variable Models: object detection

The energy includes "hidden" variables Z whose value is never given to us

$$E(Y, X) = \min_{Z \in \mathcal{Z}} E(Z, Y, X).$$

$$Y^* = \arg\min_{Y \in \mathcal{Y}, Z \in \mathcal{Z}} E(Z, Y, X).$$
The energy includes “hidden” variables Z whose value is never given to us
- We can minimize the energy over those latent variables
- We can also “marginalize” the energy over the latent variables

Minimization over latent variables:
$$E(Y, X) = \min_{Z \in \mathcal{Z}} E(Z, Y, X).$$

Marginalization over latent variables:
$$E(X, Y) = -\frac{1}{\beta} \log \int_{Z \in \mathcal{Z}} e^{-\beta E(z, Y, X)}$$

Estimation this integral may require some approximations (sampling, variational methods,....)
Example 1: Integrated Training with Sequence Alignment

Spoken word recognition with trainable elastic templates and trainable feature extraction [Driancourt&Bottou 1991, Bottou 1991, Driancourt 1994]
Spoken word recognition with trainable elastic templates and trainable feature extraction [Driancourt & Bottou 1991, Bottou 1991, Driancourt 1994]

Elastic matching using dynamic time warping (Viterbi algorithm on a trellis).

The corresponding EBFG is implicit (it changes for every new sample).
The Oldest Example of Structured Prediction

Trainable Automatic Speech Recognition system with a convolutional net (TDNN) and dynamic time warping (DTW)

The feature extractor and the structured classifier are trained simultaneously in an integrated fashion.

with the LVQ2 Loss:
- Driancourt and Bottou's speech recognizer (1991)
- Bengio's speech recognizer (1992)
- Haffner's speech recognizer (1993)
What can the latent variables represent?

Variables that would make the task easier if they were known:

- **Face recognition**: the gender of the person, the orientation of the face.
- **Object recognition**: the pose parameters of the object (location, orientation, scale), the lighting conditions.
- **Parts of Speech Tagging**: the segmentation of the sentence into syntactic units, the parse tree.
- **Speech Recognition**: the segmentation of the sentence into phonemes or phones.
- **Handwriting Recognition**: the segmentation of the line into characters.
- **Object Recognition/Scene Parsing**: the segmentation of the image into components (objects, parts, ...)

In general, we will search for the value of the latent variable that allows us to get an answer (\(Y\) of smallest energy.)
Marginalizing over latent variables instead of minimizing.

\[P(Z,Y|X) = \frac{e^{-\beta E(Z,Y,X)}}{\int_{y \in \mathcal{Y}, z \in \mathcal{Z}} e^{-\beta E(y,z,X)}}. \]

\[P(Y|X) = \frac{\int_{z \in \mathcal{Z}} e^{-\beta E(Z,Y,X)}}{\int_{y \in \mathcal{Y}, z \in \mathcal{Z}} e^{-\beta E(y,z,X)}}. \]

Equivalent to traditional energy-based inference with a redefined energy function:

\[Y^* = \arg \min_{Y \in \mathcal{Y}} -\frac{1}{\beta} \log \int_{z \in \mathcal{Z}} e^{-\beta E(z,Y,X)}. \]

Reduces to traditional minimization when Beta->infinity
Training an EBM consists in shaping the energy function so that the energies of the correct answer is lower than the energies of all other answers.

- Training sample: $X =$ image of an animal, $Y =$ “animal”

$$E(\text{animal}, X) < E(y, X) \forall y \neq \text{animal}$$
Architecture and Loss Function

Family of energy functions
\[\mathcal{E} = \{ E(W, Y, X) : W \in \mathcal{W} \} \]

Training set
\[\hat{\mathcal{S}} = \{ (X^i, Y^i) : i = 1 \ldots P \} \]

Loss functional / Loss function
- Measures the quality of an energy function on training set
\[\mathcal{L}(E, \mathcal{S}) \quad \mathcal{L}(W, \mathcal{S}) \]

Training
\[W^* = \min_{W \in \mathcal{W}} \mathcal{L}(W, \mathcal{S}) \]

Form of the loss functional
- Invariant under permutations and repetitions of the samples
\[\mathcal{L}(E, \mathcal{S}) = \frac{1}{P} \sum_{i=1}^{P} L(Y^i, E(W, Y, X^i)) + R(W) \]

Per-sample loss
Desired answer
Energy surface for a given Xi as Y varies
Regularizer
Push down on the energy of the correct answer
Pull up on the energies of the incorrect answers, particularly if they are smaller than the correct one
1. Design an architecture: a particular form for $E(W,Y,X)$.

2. Pick an inference algorithm for Y: MAP or conditional distribution, belief prop, min cut, variational methods, gradient descent, MCMC, HMC.....

3. Pick a loss function: in such a way that minimizing it with respect to W over a training set will make the inference algorithm find the correct Y for a given X.

4. Pick an optimization method.

PROBLEM: What loss functions will make the machine approach the desired behavior?
Examples of Loss Functions: Energy Loss

Energy Loss

\[L_{energy}(Y^i, E(W, Y, X^i)) = E(W, Y^i, X^i). \]

- Simply pushes down on the energy of the correct answer.
Conditional probability of the samples (assuming independence)

\[P(Y^1, \ldots, Y^P | X^1, \ldots, X^P, W) = \prod_{i=1}^{P} P(Y^i | X^i, W). \]

\[- \log \prod_{i=1}^{P} P(Y^i | X^i, W) = \sum_{i=1}^{P} - \log P(Y^i | X^i, W). \]

Gibbs distribution:

\[P(Y | X^i, W) = \frac{e^{-\beta E(W, Y, X^i)}}{\int_{y \in \mathcal{Y}} e^{-\beta E(W, y, X^i)}}. \]

\[- \log \prod_{i=1}^{P} P(Y^i | X^i, W) = \sum_{i=1}^{P} \beta E(W, Y^i, X^i) + \log \int_{y \in \mathcal{Y}} e^{-\beta E(W, y, X^i)}. \]

We get the NLL loss by dividing by \(P \) and \(\beta \):

\[\mathcal{L}_{nll}(W, S) = \frac{1}{P} \sum_{i=1}^{P} \left(E(W, Y^i, X^i) + \frac{1}{\beta} \log \int_{y \in \mathcal{Y}} e^{-\beta E(W, y, X^i)} \right). \]

Reduces to the perceptron loss when \(\beta \rightarrow \infty \).
Negative Log-Likelihood Loss

Pushes down on the energy of the correct answer
Pulls up on the energies of all answers in proportion to their probability

\[
L_{\text{nll}}(W, S) = \frac{1}{P} \sum_{i=1}^{P} \left(E(W, Y^i, X^i) + \frac{1}{\beta} \log \int_{y \in Y} e^{-\beta E(W,y,X^i)} \right).
\]

\[
\frac{\partial L_{\text{nll}}(W, Y^i, X^i)}{\partial W} = \frac{\partial E(W, Y^i, X^i)}{\partial W} - \int_{Y \in Y} \frac{\partial E(W, Y, X^i)}{\partial W} P(Y|X^i, W),
\]
A probabilistic model is an EBM in which:

– The energy can be integrated over Y (the variable to be predicted)
– The loss function is the negative log-likelihood

Negative Log Likelihood Loss has been used for a long time in many communities for discriminative learning with structured outputs

– Speech recognition: many papers going back to the early 90's [Bengio 92], [Bourlard 94]. They call “Maximum Mutual Information”
– Handwriting recognition [Bengio LeCun 94], [LeCun et al. 98]
– Bio-informatics [Haussler]
– Conditional Random Fields [Lafferty et al. 2001]
– Lots more......
– In all the above cases, it was used with non-linearly parameterized energies.
A Simpler Loss Functions: Perceptron Loss

\[L_{\text{perceptron}}(Y^i, E(W, Y, X^i)) = E(W, Y^i, X^i) - \min_{Y \in \mathcal{Y}} E(W, Y, X^i). \]

Perceptron Loss [LeCun et al. 1998], [Collins 2002]
- Pushes down on the energy of the correct answer
- Pulls up on the energy of the machine's answer
- Always positive. Zero when answer is correct
- No "margin": technically does not prevent the energy surface from being almost flat.
- Works pretty well in practice, particularly if the energy parameterization does not allow flat surfaces.
- This is often called **"discriminative Viterbi training"** in the speech and handwriting literature
Perceptron Loss for Binary Classification

\[L_{\text{perceptron}}(Y^i, E(W, Y, X^i)) = E(W, Y^i, X^i) - \min_{Y \in \mathcal{Y}} E(W, Y, X^i). \]

Energy:

\[E(W, Y, X) = -YG_W(X), \]

Inference:

\[Y^* = \arg\min_{Y \in \{-1,1\}} -YG_W(X) = \text{sign}(G_W(X)). \]

Loss:

\[\mathcal{L}_{\text{perceptron}}(W, S) = \frac{1}{P} \sum_{i=1}^{P} (\text{sign}(G_W(X^i)) - Y^i) G_W(X^i). \]

Learning Rule:

\[W \leftarrow W + \eta \left(Y^i - \text{sign}(G_W(X^i)) \right) \frac{\partial G_W(X^i)}{\partial W}, \]

If \(G_W(X) \) is linear in \(W \):

\[E(W, Y, X) = -Y\dot{W}^T\Phi(X) \]

\[W \leftarrow W + \eta \left(Y^i - \text{sign}(\dot{W}^T\Phi(X^i)) \right) \Phi(X^i) \]
First, we need to define the Most Offending Incorrect Answer

Most Offending Incorrect Answer: discrete case

Definition 1 Let Y be a discrete variable. Then for a training sample (X^i, Y^i), the most offending incorrect answer \bar{Y}^i is the answer that has the lowest energy among all answers that are incorrect:

$$\bar{Y}^i = \arg\min_{Y \in \mathcal{Y} \text{ and } Y \neq Y^i} E(W, Y, X^i).$$ \hfill (8)

Most Offending Incorrect Answer: continuous case

Definition 2 Let Y be a continuous variable. Then for a training sample (X^i, Y^i), the most offending incorrect answer \bar{Y}^i is the answer that has the lowest energy among all answers that are at least ϵ away from the correct answer:

$$\bar{Y}^i = \arg\min_{Y \in \mathcal{Y}, \|Y - Y^i\| > \epsilon} E(W, Y, X^i).$$ \hfill (9)
Examples of Generalized Margin Losses

\[L_{\text{hinge}}(W, Y^i, X^i) = \max \left(0, m + E(W, Y^i, X^i) - E(W, \bar{Y}^i, X^i) \right), \]

Hinge Loss
- [Altun et al. 2003], [Taskar et al. 2003]
- With the linearly-parameterized binary classifier architecture, we get linear SVMs

\[L_{\text{log}}(W, Y^i, X^i) = \log \left(1 + e^{E(W, Y^i, X^i) - E(W, \bar{Y}^i, X^i)} \right). \]

Log Loss
- “soft hinge” loss
- With the linearly-parameterized binary classifier architecture, we get linear Logistic Regression
Examples of Margin Losses: Square-Square Loss

\[L_{sq-sq}(W, Y^i, X^i) = E(W, Y^i, X^i)^2 + \left(\max(0, m - E(W, \bar{Y}^i, X^i)) \right)^2. \]

Square-Square Loss
- [LeCun-Huang 2005]
- Appropriate for positive energy functions

Learning \(Y = X^2 \)
Other Margin-Like Losses

LVQ2 Loss [Kohonen, Oja], Driancourt-Bottou 1991]

\[
L_{\text{lvq2}}(W, Y^i, X^i) = \min \left(1, \max \left(0, \frac{E(W, Y^i, X^i) - E(W, \bar{Y}^i, X^i)}{\delta E(W, \bar{Y}^i, X^i)} \right) \right),
\]

Minimum Classification Error Loss [Juang, Chou, Lee 1997]

\[
L_{\text{mce}}(W, Y^i, X^i) = \sigma \left(E(W, Y^i, X^i) - E(W, \bar{Y}^i, X^i) \right),
\]

\[
\sigma(x) = \left(1 + e^{-x} \right)^{-1}
\]

Square-Exponential Loss [Osadchy, Miller, LeCun 2004]

\[
L_{\text{sq-exp}}(W, Y^i, X^i) = E(W, Y^i, X^i)^2 + \gamma e^{-E(W, Y^i, X^i)}
\]
What Make a “Good” Loss Function

Good and bad loss functions

<table>
<thead>
<tr>
<th>Loss (equation #)</th>
<th>Formula</th>
<th>Margin</th>
</tr>
</thead>
<tbody>
<tr>
<td>energy loss</td>
<td>$E(W, Y^i, X^i)$</td>
<td>none</td>
</tr>
<tr>
<td>perceptron</td>
<td>$E(W, Y^i, X^i) - \min_{Y \in Y} E(W, Y, X^i)$</td>
<td>0</td>
</tr>
<tr>
<td>hinge</td>
<td>$\max (0, m + E(W, Y^i, X^i) - E(W, \bar{Y}^i, X^i))$</td>
<td>m</td>
</tr>
<tr>
<td>log</td>
<td>$\log \left(1 + e^{E(W,Y^i, X^i) - E(W,Y^i, X^i)}\right)$</td>
<td>> 0</td>
</tr>
<tr>
<td>LVQ2</td>
<td>$\min \left(M, \max (0, E(W, Y^i, X^i) - E(W, \bar{Y}^i, X^i))\right)$</td>
<td>0</td>
</tr>
<tr>
<td>MCE</td>
<td>$\left(1 + e^{-(E(W,Y^i, X^i) - E(W, \bar{Y}^i, X^i))}\right)^{-1}$</td>
<td>> 0</td>
</tr>
<tr>
<td>square-square</td>
<td>$E(W, Y^i, X^i)^2 - \left(\max (0, m - E(W, \bar{Y}^i, X^i))\right)^2$</td>
<td>m</td>
</tr>
<tr>
<td>square-exp</td>
<td>$E(W, Y^i, X^i)^2 + \beta e^{-E(W,Y^i, X^i)}$</td>
<td>> 0</td>
</tr>
<tr>
<td>NLL/MMI</td>
<td>$E(W, Y^i, X^i) + \frac{1}{\beta} \log \int_{y \in Y} e^{-\beta E(W,y,X^i)}$</td>
<td>> 0</td>
</tr>
<tr>
<td>MEE</td>
<td>$1 - e^{-\beta E(W,Y^i, X^i)} / \int_{y \in Y} e^{-\beta E(W,y,X^i)}$</td>
<td>> 0</td>
</tr>
</tbody>
</table>

Slightly more general form:

$L(W, X^i, Y^i) = \sum_y H \left(E(W, Y^i, X^i) - E(W, y, X^i) + C(Y^i, y) \right)$
Recognizing Words With Deep Learning And Structured Prediction
Making every single module in the system trainable.

Every module is trained simultaneously so as to optimize a global loss function.

Includes the feature extractor, the recognizer, and the contextual post-processor (graphical model)

Problem: back-propagating gradients through the graphical model.
A long text about "Shallow" Structured Prediction:

Energy function is linear in the parameters

\[E(X, Y, Z) = \sum_i W_i^T h_i(X, Y, Z) \]

with the NLL Loss:
- **Conditional Random Field**
 [Lafferty, McCallum, Pereira 2001]

with Hinge Loss:
- **Max Margin Markov Nets** and **Latent SVM** [Taskar, Altun, Hofmann...]

with Perceptron Loss
- **Structured Perceptron** [Collins...]

A diagram illustrating the input, latent variables, outputs, features, and parameters.
Deep Structured Prediction

Energy function is linear in the parameters

\[E(X, Y, Z) = \sum_i g_i(X, Y, Z, W_i) \]

Graph Transformer Networks
- [LeCun, Bottou, Bengio, Haffner 97, 98]
- NLL loss
- Perceptron loss

ConvNet

Inputs: X
Latent Vars: Z1, Z2, Z3
Outputs: Y1, Y2, Y3, Y4
Using Graphs instead of Vectors or Arrays.

Whereas traditional learning machines manipulate fixed-size vectors, Graph Transformer Networks manipulate graphs.
Deep Factors & implicit graphs: GTN

Handwriting Recognition with Graph Transformer Networks

Un-normalized hierarchical HMMs
- Trained with Perceptron loss [LeCun, Bottou, Bengio, Haffner 1998]

Answer = sequence of symbols
Latent variable = segmentation
Variables:
- X: input image
- Z: path in the interpretation graph/segmentation
- Y: sequence of labels on a path

Loss function: computing the energy of the desired answer:

$$E(W, Y, X)$$
Graph Transformer Networks

Variables:
- X: input image
- Z: path in the interpretation graph/segmentation
- Y: sequence of labels on a path

Loss function: computing the contrastive term:

\[E(W, \tilde{Y}, X) \]
Example: Perceptron loss

– (no margin)
Structured prediction: when the output is structured: string, graph.....

Integrating deep learning and structured prediction is an old idea

In fact, it predates structured prediction [LeCun, Bottou, Bengio, Haffner 1998]

Globally-trained convolutional-net + graphical models for handwriting recognition

- trained discriminatively at the word level
- Loss identical to CRF and structured perceptron
- Compositional movable parts model
Pen-based handwriting recognition (for tablet computer)
- [Bengio&LeCun 1995]
The composition of two graphs can be computed, the same way the dot product between two vectors can be computed.

General theory: semi-ring algebra on weighted finite-state transducers and acceptors.
Graph transformer network trained to read check amounts. Trained globally with Negative-Log-Likelihood loss. 50% percent correct, 49% reject, 1% error (detectable later in the process. Fielded in 1996, used in many banks in the US and Europe. Processes an estimated 10% to 20% of all the checks written in the US.
Loss Function to train Energy-Based Models

Good and bad loss functions

A tutorial on Energy-Based Learning [LeCun et al 2006]

<table>
<thead>
<tr>
<th>Loss (equation #)</th>
<th>Formula</th>
<th>Margin</th>
</tr>
</thead>
<tbody>
<tr>
<td>energy loss</td>
<td>$E(W, Y^i, X^i)$</td>
<td>none</td>
</tr>
<tr>
<td>perceptron</td>
<td>$E(W, Y^i, X^i) - \min_{Y \in \mathcal{Y}} E(W, Y, X^i)$</td>
<td>0</td>
</tr>
<tr>
<td>hinge</td>
<td>$\max(0, m + E(W, Y^i, X^i) - E(W, \bar{Y}^i, X^i))$</td>
<td>m</td>
</tr>
<tr>
<td>log</td>
<td>$\log\left(1 + e^{E(W, Y^i, X^i) - E(W, \bar{Y}^i, X^i)}\right)$</td>
<td>> 0</td>
</tr>
<tr>
<td>LVQ2</td>
<td>$\min(M, \max(0, E(W, Y^i, X^i) - E(W, \bar{Y}^i, X^i)))$</td>
<td>0</td>
</tr>
<tr>
<td>MCE</td>
<td>$\left(1 + e^{-(E(W, Y^i, X^i) - E(W, \bar{Y}^i, X^i))}\right)^{-1}$</td>
<td>> 0</td>
</tr>
<tr>
<td>square-square</td>
<td>$E(W, Y^i, X^i)^2 - \left(\max(0, m - E(W, \bar{Y}^i, X^i))\right)^2$</td>
<td>m</td>
</tr>
<tr>
<td>square-exp</td>
<td>$E(W, Y^i, X^i)^2 + \beta e^{-E(W, \bar{Y}^i, X^i)}$</td>
<td>> 0</td>
</tr>
<tr>
<td>NLL/MMI</td>
<td>$E(W, Y^i, X^i) + \frac{1}{\beta} \log \int_{y \in \mathcal{Y}} e^{-\beta E(W, y, X^i)}$</td>
<td>> 0</td>
</tr>
<tr>
<td>MEE</td>
<td>$1 - e^{-\beta E(W, Y^i, X^i)} \int_{y \in \mathcal{Y}} e^{-\beta E(W, y, X^i)}$</td>
<td>> 0</td>
</tr>
</tbody>
</table>
Trainable Speech/Handwriting Recognition systems that integrate Neural Nets (or other “deep” classifiers) with dynamic time warping, Hidden Markov Models, or other graph-based hypothesis representations.

Word-level global discriminative training with GMM:

With Minimum Empirical Error loss:
- Ljolje and Rabiner (1990)

With MCE:
- Juang et al. (1997)

Word-level global discriminative training with ConvNets:

With the LVQ2 Loss:
- Driancourt and Bottou's speech recognizer (1991)

With Neg Log Likelihood (aka MMI):

CRF-like Late normalization:
- un-normalized HMM
- Bottou pointed out the label bias problem (1991)
- Denker and Burges proposed a solution (1995)
- Implemented in (LeCun et al 1998)
Brute Force Approach To Multiple Object Recognition
Idea #1: Sliding Window ConvNet + Weighted FSM

“Space Displacement Neural Net”.
- Convolutions are applied to a large image
- Output and feature maps are extended/replicated accordingly
Idea #1: Sliding Window ConvNet + Weighted FSM
Idea #1: Sliding Window ConvNet + Weighted FSM
Idea #1: Sliding Window ConvNet + Weighted FSM
Convolutional Networks
For
Visual Object
Recognition and Detection
We knew ConvNet worked well with characters and small images.

- **Traffic Sign Recognition (GTSRB)**
 - German Traffic Sign Reco Bench
 - 99.2% accuracy (IDSIA)

- **House Number Recognition (Google)**
 - Street View House Numbers
 - 94.3% accuracy (NYU)
NORB Dataset (2004): 5 categories, multiple views and illuminations

- Training instances: 291,600
- Test instances: 58,320
- Less than 6% error on test set with cluttered backgrounds

291,600 training samples, 58,320 test samples
mid 2000s: state of the art results on face detection

<table>
<thead>
<tr>
<th>Data Set-></th>
<th>TILTED</th>
<th>PROFILE</th>
<th>MIT+CMU</th>
</tr>
</thead>
<tbody>
<tr>
<td>False positives per image-></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.42 26.9</td>
<td>0.47 3.36</td>
<td>0.5 1.28</td>
<td></td>
</tr>
<tr>
<td>Our Detector</td>
<td>90% 97%</td>
<td>67% 83%</td>
<td>83% 88%</td>
</tr>
<tr>
<td>Jones & Viola (tilted)</td>
<td>90% 95%</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Jones & Viola (profile)</td>
<td>x</td>
<td>70% 83%</td>
<td>x</td>
</tr>
</tbody>
</table>

[Vaillant et al. IEE 1994] [Osadchy et al. 2004] [Osadchy et al, JMLR 2007]
Simultaneous face detection and pose estimation

[Vaillant et al. IEE 1994] [Osadchy et al. 2004] [Osadchy et al, JMLR 2007]
Simultaneous face detection and pose estimation
Scene Parsing/Labeling: Multiscale ConvNet Architecture

Each output sees a large input context:

- **46x46** window at full rez; **92x92** at ½ rez; **184x184** at ¼ rez
- [7x7conv]→[2x2pool]→[7x7conv]→[2x2pool]→[7x7conv]→
- Trained supervised on fully-labeled images
Scene Parsing/Labeling

[Farabet et al. ICML 2012, PAMI 2013]
Scene Parsing/Labeling

- No post-processing
- Frame-by-frame
- ConvNet runs at 50ms/frame on Virtex-6 FPGA hardware
 - But communicating the features over ethernet limits system performance
ConvNet for Long Range Adaptive Robot Vision
(DARPA LAGR program 2005-2008)
model = nn.Sequential()
-- stage 1: filter bank -> squashing -> L2 pooling -> normalization
model:add(nn.SpatialConvolutionMM(nfeats, nstates[1], filtsiz, filtsiz))
model:add(nn.Tanh())
model:add(nn.SpatialLPPooling(nstates[1],2,poolsiz,poolsiz,poolsiz,poolsiz))
model:add(nn.SpatialSubtractiveNormalization(nstates[1], normkernel))
-- stage 2: filter bank -> squashing -> L2 pooling -> normalization
model:add(nn.SpatialConvolutionMM(nstates[1],nstates[2],filtsiz,filtsiz))
model:add(nn.Tanh())
model:add(nn.SpatialLPPooling(nstates[2],2,poolsiz,poolsiz,poolsiz,poolsiz))
model:add(nn.SpatialSubtractiveNormalization(nstates[2], normkernel))
-- stage 3: 2 fully-connected layers
model:add(nn.Reshape(nstates[2]*filtsize*filtsize))
model:add(nn.Linear(nstates[2]*filtsize*filtsize, nstates[3]))
model:add(nn.Tanh())
model:add(nn.Linear(nstates[3], noutputs))

- http://www.torch.ch (Torch7: Lua-based dev environment for ML, CV....)
- http://eblearn.sf.net (C++ Library with convnet support by P. Sermanet)
In the mid 2000s, ConvNets were getting decent results on object classification.

Dataset: “Caltech101”:
- 101 categories
- 30 training samples per category

But the results were slightly worse than more “traditional” computer vision methods, because
- 1. the datasets were too small
- 2. the computers were too slow
Late 2000s: we could get decent results on object recognition

- But we couldn't beat the state of the art because the datasets were too small.
- Caltech101: 101 categories, 30 samples per category.
- But we learned that rectification and max pooling are useful! [Jarrett et al. ICCV 2009]

Single Stage System: $[64.F_{CSG}^{9 \times 9} \rightarrow R/N/P_{5 \times 5}^{5 \times 5}] - \text{log_reg}$

<table>
<thead>
<tr>
<th>R/N/P</th>
<th>$R_{\text{abs}} - N - P_A$</th>
<th>$R_{\text{abs}} - P_A$</th>
<th>$N - P_M$</th>
<th>$N - P_A$</th>
<th>P_A</th>
</tr>
</thead>
<tbody>
<tr>
<td>U+</td>
<td>54.2%</td>
<td>50.0%</td>
<td>44.3%</td>
<td>18.5%</td>
<td>14.5%</td>
</tr>
<tr>
<td>R+</td>
<td>54.8%</td>
<td>47.0%</td>
<td>38.0%</td>
<td>16.3%</td>
<td>14.3%</td>
</tr>
<tr>
<td>U</td>
<td>52.2%</td>
<td>43.3%(±1.6)</td>
<td>44.0%</td>
<td>17.2%</td>
<td>13.4%</td>
</tr>
<tr>
<td>R</td>
<td>53.3%</td>
<td>31.7%</td>
<td>32.1%</td>
<td>15.3%</td>
<td>12.1%(±2.2)</td>
</tr>
<tr>
<td>G</td>
<td>52.3%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Two Stage System: $[64.F_{CSG}^{9 \times 9} \rightarrow R/N/P_{5 \times 5}^{5 \times 5}] - [256.F_{CSG}^{9 \times 9} \rightarrow R/N/P_{4 \times 4}^{4 \times 4}] - \text{log_reg}$

<table>
<thead>
<tr>
<th>R/N/P</th>
<th>$R_{\text{abs}} - N - P_A$</th>
<th>$R_{\text{abs}} - P_A$</th>
<th>$N - P_M$</th>
<th>$N - P_A$</th>
<th>P_A</th>
</tr>
</thead>
<tbody>
<tr>
<td>U+U+</td>
<td>65.5%</td>
<td>60.5%</td>
<td>61.0%</td>
<td>34.0%</td>
<td>32.0%</td>
</tr>
<tr>
<td>R+R+</td>
<td>64.7%</td>
<td>59.5%</td>
<td>60.0%</td>
<td>31.0%</td>
<td>29.7%</td>
</tr>
<tr>
<td>UU</td>
<td>63.7%</td>
<td>46.7%</td>
<td>56.0%</td>
<td>23.1%</td>
<td>9.1%</td>
</tr>
<tr>
<td>RR</td>
<td>62.9%</td>
<td>33.7%(±1.5)</td>
<td>37.6%(±1.9)</td>
<td>19.6%</td>
<td>8.8%</td>
</tr>
<tr>
<td>GT</td>
<td>55.8%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

← like HMAX model

Single Stage: $[64.F_{CSG}^{9 \times 9} \rightarrow R/N/P_{5 \times 5}^{5 \times 5}] - \text{PMK-SVM}$

| U | 64.0% |

Two Stages: $[64.F_{CSG}^{9 \times 9} \rightarrow R/N/P_{5 \times 5}^{5 \times 5}] - [256.F_{CSG}^{9 \times 9} \rightarrow R/N] - \text{PMK-SVM}$

| UU | 52.8% |
Results on Caltech101 with sigmoid non-linearity

Single Stage System: \([64.\mathbf{F}_{CSG}^{9 \times 9} - R/N/P_{5 \times 5}^5] - \text{log}_\text{reg}\)

<table>
<thead>
<tr>
<th>R/N/P</th>
<th>(R_{abs} - N - P_A)</th>
<th>(R_{abs} - P_A)</th>
<th>(N - P_M)</th>
<th>(N - P_A)</th>
<th>(P_A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U^+</td>
<td>54.2%</td>
<td>50.0%</td>
<td>44.3%</td>
<td>18.5%</td>
<td>14.5%</td>
</tr>
<tr>
<td>R^+</td>
<td>54.8%</td>
<td>47.0%</td>
<td>38.0%</td>
<td>16.3%</td>
<td>14.3%</td>
</tr>
<tr>
<td>U</td>
<td>52.2%</td>
<td>43.3%(±1.6)</td>
<td>44.0%</td>
<td>17.2%</td>
<td>13.4%</td>
</tr>
<tr>
<td>R</td>
<td>53.3%</td>
<td>31.7%</td>
<td>32.1%</td>
<td>15.3%</td>
<td>12.1%(±2.2)</td>
</tr>
<tr>
<td>G</td>
<td>52.3%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Two Stage System: \([64.\mathbf{F}_{CSG}^{9 \times 9} - R/N/P_{5 \times 5}^5] - [256.\mathbf{F}_{CSG}^{9 \times 9} - R/N/P_{4 \times 4}^4] - \text{log}_\text{reg}\)

<table>
<thead>
<tr>
<th>R/N/P</th>
<th>(R_{abs} - N - P_A)</th>
<th>(R_{abs} - P_A)</th>
<th>(N - P_M)</th>
<th>(N - P_A)</th>
<th>(P_A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U^+U^+</td>
<td>65.5%</td>
<td>60.5%</td>
<td>61.0%</td>
<td>34.0%</td>
<td>32.0%</td>
</tr>
<tr>
<td>R^+R^+</td>
<td>64.7%</td>
<td>59.5%</td>
<td>60.0%</td>
<td>31.0%</td>
<td>29.7%</td>
</tr>
<tr>
<td>UU</td>
<td>63.7%</td>
<td>46.7%</td>
<td>56.0%</td>
<td>23.1%</td>
<td>9.1%</td>
</tr>
<tr>
<td>RR</td>
<td>62.9%</td>
<td>33.7%(±1.5)</td>
<td>37.6%(±1.9)</td>
<td>19.6%</td>
<td>8.8%</td>
</tr>
<tr>
<td>GT</td>
<td>55.8%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

← like HMAX model

Single Stage: \([64.\mathbf{F}_{CSG}^{9 \times 9} - R/N/P_{5 \times 5}^5] - \text{PMK-SVM}\)

<table>
<thead>
<tr>
<th>U</th>
<th>64.0%</th>
</tr>
</thead>
</table>

Two Stages: \([64.\mathbf{F}_{CSG}^{9 \times 9} - R/N/P_{5 \times 5}^5] - [256.\mathbf{F}_{CSG}^{9 \times 9} - R/N] - \text{PMK-SVM}\)

<table>
<thead>
<tr>
<th>UU</th>
<th>52.8%</th>
</tr>
</thead>
</table>
Then, two things happened...

The ImageNet dataset [Fei-Fei et al. 2012]
- 1.2 million training samples
- 1000 categories

Fast Graphical Processing Units (GPU)
- Capable of 1 trillion operations/second
The ImageNet dataset

- 1.5 million training samples
- 1000 fine-grained categories (breeds of dogs,...)
<table>
<thead>
<tr>
<th>Layer Type</th>
<th>Parameters</th>
<th>MAC Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>FULL CONNECT</td>
<td>4M</td>
<td>4Mflop</td>
</tr>
<tr>
<td>FULL 4096/ReLU</td>
<td>16M</td>
<td>16M</td>
</tr>
<tr>
<td>FULL 4096/ReLU</td>
<td>37M</td>
<td>37M</td>
</tr>
<tr>
<td>MAX POOLING</td>
<td>442K</td>
<td>74M</td>
</tr>
<tr>
<td>CONV 3x3/ReLU 256fm</td>
<td>1.3M</td>
<td>224M</td>
</tr>
<tr>
<td>CONV 3x3/ReLU 384fm</td>
<td>884K</td>
<td>149M</td>
</tr>
<tr>
<td>MAX POOLING 2x2sub</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOCAL CONTRAST NORM</td>
<td>307K</td>
<td>223M</td>
</tr>
<tr>
<td>CONV 11x11/ReLU 256fm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAX POOL 2x2sub</td>
<td>35K</td>
<td>105M</td>
</tr>
<tr>
<td>LOCAL CONTRAST NORM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONV 11x11/ReLU 96fm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Won the 2012 ImageNet LSVRC. 60 Million parameters, 832M MAC ops.
Method: large convolutional net
- 650K neurons, 832M synapses, 60M parameters
- Trained with backprop on GPU
- Trained “with all the tricks Yann came up with in the last 20 years, plus dropout” (Hinton, NIPS 2012)
- Rectification, contrast normalization,...

Error rate: 15% (whenever correct class isn't in top 5)

Previous state of the art: 25% error

A REVOLUTION IN COMPUTER VISION

Acquired by Google in Jan 2013

Deployed in Google+ Photo Tagging in May 2013
Searched my personal collection for “bird”
NYU ConvNet Trained on ImageNet: **OverFeat**

- [Sermanet et al. arXiv:1312.6229]
- Trained on GPU using Torch7
- Uses a number of new tricks
- **Classification 1000 categories:**
 - 13.8% error (top 5) with an ensemble of 7 networks (Krizhevsky: 15%)
 - 15.4% error (top 5) with a single network (Krizhevksy: 18.2%)
- **Classification+Localization**
 - 30% error (Krizhevsky: 34%)
- **Detection (200 categories)**
 - 19% correct

Downloadable code (running, no training)
- Search for “overfeat NYU” on Google
- [http://cilvr.nyu.edu → software](http://cilvr.nyu.edu)
Kernels: Layer 1 (7x7) and Layer 2 (7x7)

Layer 1: 3x96 kernels, RGB->96 feature maps, 7x7 Kernels, stride 2

Layer 2: 96x256 kernels, 7x7
Layer 1: 3x96 kernels, RGB->96 feature maps, 11x11 Kernels, stride 4
Layer 1: 3x512 kernels, 7x7, 2x2 stride.

```
1: nn.SpatialConvolutionRing nInputPlane=3 nOutputPlane=512 kW*kH=7*7 dW
```

```
dW*dH=2*2
```
ImageNet: Classification

- **Give the name of the dominant object in the image**
- **Top-5 error rates: if correct class is not in top 5, count as error**
- **Red: ConvNet, blue: no ConvNet**

<table>
<thead>
<tr>
<th>2012 Teams</th>
<th>%error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supervision (Toronto)</td>
<td>15.3</td>
</tr>
<tr>
<td>ISI (Tokyo)</td>
<td>26.1</td>
</tr>
<tr>
<td>VGG (Oxford)</td>
<td>26.9</td>
</tr>
<tr>
<td>XRCE/INRIA</td>
<td>27.0</td>
</tr>
<tr>
<td>UvA (Amsterdam)</td>
<td>29.6</td>
</tr>
<tr>
<td>INRIA/LEAR</td>
<td>33.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2013 Teams</th>
<th>%error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clarifai (NYU spinoff)</td>
<td>11.7</td>
</tr>
<tr>
<td>NUS (Singapore)</td>
<td>12.9</td>
</tr>
<tr>
<td>Zeiler-Fergus (NYU)</td>
<td>13.5</td>
</tr>
<tr>
<td>A. Howard</td>
<td>13.5</td>
</tr>
<tr>
<td>OverFeat (NYU)</td>
<td>14.1</td>
</tr>
<tr>
<td>UvA (Amsterdam)</td>
<td>14.2</td>
</tr>
<tr>
<td>Adobe</td>
<td>15.2</td>
</tr>
<tr>
<td>VGG (Oxford)</td>
<td>15.2</td>
</tr>
<tr>
<td>VGG (Oxford)</td>
<td>23.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2014 Teams</th>
<th>%error</th>
</tr>
</thead>
<tbody>
<tr>
<td>GoogLeNet</td>
<td>6.6</td>
</tr>
<tr>
<td>VGG (Oxford)</td>
<td>7.3</td>
</tr>
<tr>
<td>MSRA</td>
<td>8.0</td>
</tr>
<tr>
<td>A. Howard</td>
<td>8.1</td>
</tr>
<tr>
<td>DeeperVision</td>
<td>9.5</td>
</tr>
<tr>
<td>NUS-BST</td>
<td>9.7</td>
</tr>
<tr>
<td>TTIC-ECP</td>
<td>10.2</td>
</tr>
<tr>
<td>XYZ</td>
<td>11.2</td>
</tr>
<tr>
<td>UvA</td>
<td>12.1</td>
</tr>
</tbody>
</table>
Classification+Localization: Results

Top 5:
- white wolf
- white wolf
- timber wolf
- timber wolf
- Arctic fox

Groundtruth:
- white wolf
- white wolf (2)
- white wolf (3)
- white wolf (4)
- white wolf (5)
It's best to propose several categories for the same window
- One of them might be right

2014 results: 25.3% (VGG Oxford), 26.4% (GoogLeNet)
Apply convnet with a sliding window over the image at multiple scales

Important note: it's very cheap to slide a convnet over an image

Just compute the convolutions over the whole image and replicate the fully-connected layers
Traditional Detectors/Classifiers must be applied to every location on a large input image, at multiple scales.

Convolutional nets can replicated over large images very cheaply.

Simply apply the convolutions to the entire image and spatially replicate the fully-connected layers.
Apply convnet with a sliding window over the image at multiple scales.

For each window, predict a class and bounding box parameters.

Even if the object is not completely contained in the viewing window, the convnet can predict where it thinks the object is.
Classification + Localization:
sliding window + bounding box regression + bbox voting

- Apply convnet with a sliding window over the image at multiple scales
- For each window, predict a class and bounding box parameters
- Compute an “average” bounding box, weighted by scores
Localization: Sliding Window + bbox vote + multiscale
Detection / Localization

OverFeat • Pierre Sermanet • New York University
OverFeat • Pierre Sermanet • New York University
Detection / Localization
Detection / Localization

OverFeat • Pierre Sermanet • New York University
200 broad categories

There is a penalty for false positives

Some examples are easy some are impossible/ambiguous

Some classes are well detected

Burritos?
Groundtruth is sometimes ambiguous or incomplete

Large overlap between objects stops non-max suppression from working

Top predictions:
- tv or monitor (confidence 11.5)
- person (confidence 4.5)
- miniskirt (confidence 3.1)

Groundtruth:
- tv or monitor
- tv or monitor (2)
- tv or monitor (3)
- person
- remote control
- remote control (2)
ImageNet: Detection (200 categories)

- **Give a bounding box and a category for all objects in the image**
- **MAP = mean average precision**
- **Red: ConvNet, blue: no ConvNet**

2013 Teams

<table>
<thead>
<tr>
<th>Team</th>
<th>mAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>UvA Amsterdam</td>
<td>22.6</td>
</tr>
<tr>
<td>NEC Labs-America</td>
<td>20.9</td>
</tr>
<tr>
<td>OverFeat NYU</td>
<td>19.4</td>
</tr>
</tbody>
</table>

Off cycle results

<table>
<thead>
<tr>
<th>Team</th>
<th>mAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berkeley RCNN</td>
<td>34.5</td>
</tr>
<tr>
<td>OverFeat NYU</td>
<td>24.3</td>
</tr>
</tbody>
</table>

2014 Teams

<table>
<thead>
<tr>
<th>Team</th>
<th>mAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>GoogLeNet</td>
<td>43.9</td>
</tr>
<tr>
<td>CUHK-DeepID2</td>
<td>40.7</td>
</tr>
<tr>
<td>DeepInsight</td>
<td>40.4</td>
</tr>
<tr>
<td>NUS</td>
<td>37.2</td>
</tr>
<tr>
<td>UvA Amsterdam</td>
<td>35.4</td>
</tr>
<tr>
<td>MSRA</td>
<td>35.1</td>
</tr>
<tr>
<td>Berkeley RCNN</td>
<td>34.5</td>
</tr>
</tbody>
</table>
Results: pre-trained on ImageNet1K, fine-tuned on ImageNet Detection
Detection Examples
Detection Examples
Groundtruth is sometimes ambiguous or incomplete

Top predictions:
- microwave (confidence 5.6)
- refrigerator (confidence 2.5)

Groundtruth:
- bowl
- microwave

Top predictions:
- person (confidence 6.0)

Groundtruth:
- drum
- lamp
- lamp (2)
- guitar
- person
- person (2)
- person (3)
- microphone
- microphone (2)
- microphone (3)

Top predictions:
- artichoke (confidence 162.8)

Groundtruth:
- sunglasses
- artichoke
- artichoke (2)
- artichoke (3)
Detection: Difficult Examples

- Non-max suppression makes us miss many objects
- Person behind instrument
- A bit of contextual post-processing would fix many errors
Detection: Interesting Failures

Top predictions:
- corkscrew (confidence 38.1)

Groundtruth:
- snake

Snake → Corkscrew

Top predictions:
- remote control (confidence 31.8)
- filing cabinet (confidence 2.2)

Groundtruth:
- table
- water bottle
- water bottle (2)
- water bottle (3)
- water bottle (4)
- refrigerator
Detection: Bad Groundtruth

One of the labelers likes ticks.....
ConvNets
As Generic
Feature Extractors
- Kaggle competition: Dog vs Cats
- Won by Pierre Sermanet (NYU):
- ImageNet network (OverFeat) last layers retrained on cats and dogs
OverFeat Features -> Trained Classifier on other datasets

Y LeCun

http://www.csc.kth.se/cvap/cvg/DL/ots/

<table>
<thead>
<tr>
<th>Comparing Best State of the Art Methods with Deep Representations</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC07c</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>best non-CNN results</td>
</tr>
<tr>
<td>off-the-shelf ImageNet Model + rep learning</td>
</tr>
<tr>
<td>Other Deep Learning Models</td>
</tr>
</tbody>
</table>

VOC07c: Pascal VOC 2007 (Object Image Classification)
VOC12c: Pascal VOC 2012 (Object Image Classification)
VOC12a: Pascal VOC 2012 (Action Image Classification)
MIT67: MIT 67 Indoor Scenes (Scene Image Classification)
VOC07d: PASCAL VOC 2007 (Object Detection)
VOC10d: PASCAL VOC 2010 (Object Detection)
VOC12d: PASCAL VOC 2012 (Object Detection)
VOC11s: PASCAL VOC 2011 (Object Category Segmentation)

200Birds: UCSD-Caltech 2011-200 Birds dataset (Fine-grained Recognition)
102Flowers: Oxford 102 Flowers (Fine-grained Recognition)
H3Dposelets: Human 9 Attributes (Attribute Detection)
UIUC object attributes: (Attribute Detection)
LFW: Labelled Faces in the Wild (Metric Learning)
Oxford5k: Oxford 5k Buildings Dataset (Instance Retrieval)
Paris6k: Paris 6k Buildings Dataset (Instance Retrieval)
Sculp6k: Oxford Sculptures Dataset (Instance Retrieval)
Holidays: INRIA Holidays Scenes Dataset (Instance Retrieval)
UKB: Uni. of Kentucky Retrieval Benchmark Dataset (Instance Retrieval)
<table>
<thead>
<tr>
<th>Dataset</th>
<th>Performance</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Sermanet et al 2014]: OverFeat (fine-tuned features for each task) (tasks are ordered by increasing difficulty)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>image classification</td>
<td>ImageNet LSVRC 2013</td>
<td>competitive state of the art</td>
</tr>
<tr>
<td>Dogs vs Cats Kaggle challenge 2014</td>
<td>state of the art</td>
<td></td>
</tr>
<tr>
<td>object localization</td>
<td>ImageNet LSVRC 2013</td>
<td>state of the art</td>
</tr>
<tr>
<td>object detection</td>
<td>ImageNet LSVRC 2013</td>
<td>state of the art</td>
</tr>
<tr>
<td>[Razavian et al, 2014]: public OverFeat library (no retraining) + SVM (simplest approach possible on purpose, no attempt at more complex classifiers) (tasks are ordered by “distance” from classification task on which OverFeat was trained)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>image classification</td>
<td>Pascal VOC 2007</td>
<td>competitive state of the art</td>
</tr>
<tr>
<td>scene recognition</td>
<td>MIT-67</td>
<td>competitive state of the art</td>
</tr>
<tr>
<td>fine grained recognition</td>
<td>Caltech-UCSD Birds 200-2011</td>
<td>competitive state of the art</td>
</tr>
<tr>
<td>Oxford 102 Flowers</td>
<td>Oxford 5k buildings</td>
<td>state of the art</td>
</tr>
<tr>
<td>scene recognition</td>
<td>UCI 64 object attributes</td>
<td>state of the art</td>
</tr>
<tr>
<td>attribute detection</td>
<td>H3D Human Attributes</td>
<td>state of the art</td>
</tr>
<tr>
<td>image retrieval (search by image similarity)</td>
<td>Oxford 5k buildings</td>
<td>competitive relatively poor</td>
</tr>
<tr>
<td></td>
<td>Paris 6k buildings</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sculp6k</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Holidays</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UKBench</td>
<td></td>
</tr>
</tbody>
</table>

Image Similarity Matching
With Siamese Networks
Embedding, DrLIM
Dimensionality Reduction by Learning an Invariant Mapping

- **Step 1**: Construct neighborhood graph.
- **Step 2**: Choose a parameterized family of functions.
- **Step 3**: Optimize the parameters such that:
 - Outputs for *similar samples* are pulled closer.
 - Outputs for *dissimilar samples* are pushed away.

joint work with Sumit Chopra: Hadsell et al. CVPR 06; Chopra et al., CVPR 05
Siamese Architecture [Bromley, Sackinger, Shah, LeCun 1994]
Loss function:

- Outputs corresponding to input samples that are neighbors in the neighborhood graph should be nearby.

- Outputs for input samples that are not neighbors should be far away from each other.

\[
\|G_w(x_1) - G_w(x_2)\| \quad D_w \\
\|G_w(x_1) - G_w(x_2)\| \\
\]

Similar images (neighbors in the neighborhood graph)

Dissimilar images (non-neighbors in the neighborhood graph)
Face Recognition: DeepFace (Facebook AI Research)

- [Taigman et al. CVPR 2014]
 - Alignment
 - Convnet
 - Close to human performance on frontal views
 - Can now look for a person among 800 millions in 5 seconds
 - Uses 256-bit “compact binary codes”
- [Gong et al. CVPR 2015]
Accurate Depth Estimation from Stereo
KITTI Dataset (RGB registered with LIDAR)

- Stereo Cameras + Velodyne LIDAR: aligned data.
- Collected from a car
- Lots of results with many methods from many teams around the world
- Stereo images sparsely labeled with depth values
- Supervised learning
- supervised learning of a patch matcher (as a binary classifier)
ConvNet for Stereo Matching

Using a ConvNet to learn a similarity measure between image patches

Left input image

Right input image

Output disparity map

Figure 2: Network architecture
ConvNet for Stereo Matching

Image

Winner-take-all output
(14.55% error >3 pix)

Result after cleanup
(2.61% error >3 pix)
Depth Estimation from Stereo Pairs

Using a ConvNet to learn a similarity measure between image patches/

Record holder on KITTI dataset (Sept 2014):

<table>
<thead>
<tr>
<th>Rank</th>
<th>Method</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Our method</td>
<td>2.61 %</td>
</tr>
<tr>
<td>2</td>
<td>SPS-StF1</td>
<td>2.83 %</td>
</tr>
<tr>
<td>3</td>
<td>VC-SF</td>
<td>3.05 %</td>
</tr>
<tr>
<td>4</td>
<td>PCBP-SS</td>
<td>3.40 %</td>
</tr>
<tr>
<td>5</td>
<td>DDS-SS</td>
<td>3.83 %</td>
</tr>
</tbody>
</table>

Figure 2: Network architecture
KITTI Stereo Leaderboard (Sept 2014)

Metric: Percentage of pixels with more than 3 pixel error on disparity

Our ConvNet method is first. Doesn't use optical flow nor multiple images.

- #2 uses optical flow and 2 frames
- #3 uses multiple frames
- #4 is at 3.39% vs our 2.61%

<table>
<thead>
<tr>
<th>Rank</th>
<th>Method</th>
<th>Setting</th>
<th>Code</th>
<th>Out-Noc</th>
<th>Out-All</th>
<th>Avg-Noc</th>
<th>Avg-All</th>
<th>Density</th>
<th>Runtime</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MC-CNN</td>
<td></td>
<td></td>
<td>2.61%</td>
<td>3.84%</td>
<td>0.8 px</td>
<td>1.0 px</td>
<td>100.00%</td>
<td>100 s</td>
</tr>
<tr>
<td>2</td>
<td>SPS-StFI</td>
<td>![icon]</td>
<td></td>
<td>2.83%</td>
<td>3.64%</td>
<td>0.8 px</td>
<td>0.9 px</td>
<td>100.00%</td>
<td>35 s</td>
</tr>
<tr>
<td>3</td>
<td>VC-SF</td>
<td>![icon]</td>
<td></td>
<td>3.05%</td>
<td>3.31%</td>
<td>0.8 px</td>
<td>0.8 px</td>
<td>100.00%</td>
<td>300 s</td>
</tr>
<tr>
<td>4</td>
<td>SPS-St</td>
<td>![icon]</td>
<td></td>
<td>3.39%</td>
<td>4.41%</td>
<td>0.9 px</td>
<td>1.0 px</td>
<td>100.00%</td>
<td>5 s</td>
</tr>
<tr>
<td>5</td>
<td>PCBP-SS</td>
<td>![icon]</td>
<td></td>
<td>3.40%</td>
<td>4.72%</td>
<td>0.8 px</td>
<td>1.0 px</td>
<td>100.00%</td>
<td>5 min</td>
</tr>
</tbody>
</table>

Depth Estimation from Stereo Pairs: Results

[Zbontar & LeCun Arxiv '14]

Presentation at ECCV workshop 2014/9/6
Other Tasks for Which Deep Convolutional Nets are the Best

- Handwriting recognition MNIST (many), Arabic HWX (IDSIA)
- OCR in the Wild [2011]: StreetView House Numbers (NYU and others)
- Traffic sign recognition [2011] GTSRB competition (IDSIA, NYU)
- Asian handwriting recognition [2013] ICDAR competition (IDSIA)
- Pedestrian Detection [2013]: INRIA datasets and others (NYU)
- Volumetric brain image segmentation [2009] connectomics (IDSIA, MIT)
- Object Recognition [2012] ImageNet competition (Toronto)
- Scene Parsing [2012] Stanford bgd, SiftFlow, Barcelona datasets (NYU)
- Scene parsing from depth images [2013] NYU RGB-D dataset (NYU)
- Speech Recognition [2012] Acoustic modeling (IBM and Google)
- Breast cancer cell mitosis detection [2011] MITOS (IDSIA)

The list of perceptual tasks for which ConvNets hold the record is growing.
Most of these tasks (but not all) use purely supervised convnets.
Deep Learning and Convolutional Networks in Speech, Audio, and Signals
A typical speech recognition architecture with DL-based acoustic modeling

- Features: log energy of a filter bank (e.g. 40 filters)
- Neural net acoustic modeling (convolutional or not)
- Input window: typically 10 to 40 acoustic frames
- Fully-connected neural net: 10 layers, 2000-4000 hidden units/layer
- But convolutional nets do better....
- Predicts phone state, typically 2000 to 8000 categories

Mohamed et al. “DBNs for phone recognition” NIPS Workshop 2009
Zeiler et al. “On rectified linear units for speech recognition” ICASSP 2013
Acoustic Model: ConvNet with 7 layers. 54.4 million parameters.
Classifies acoustic signal into 3000 context-dependent subphones categories
ReLU units + dropout for last layers
Trained on GPU. 4 days of training
Subphone-level classification error (sept 2013):
- Cantonese: phone: 20.4% error; subphone: 33.6% error (IBM DNN: 37.8%)

Subphone-level classification error (march 2013)
- Cantonese: subphone: 36.91%
- Vietnamese: subphone 48.54%

Full system performance (token error rate on conversational speech):
- 76.2% (52.9% substitution, 13.0% deletion, 10.2% insertion)
Training samples.
- 40 MEL-frequency Cepstral Coefficients
- Window: 40 frames, 10ms each
Convolution Kernels at Layer 1:
- 64 kernels of size 9x9
Convolutional Networks
In
Image Segmentation, & Scene Labeling
ConvNets for Image Segmentation

- **Biological Image Segmentation**
 - [Ning et al. IEEE-TIP 2005]

- **Pixel labeling with large context using a convnet**

- **ConvNet takes a window of pixels and produces a label for the central pixel**

- **Cleanup using a kind of conditional random field (CRF)**
 - Similar to a field of expert
Semantic Labeling / Scene Parsing: Labeling every pixel with the object it belongs to

- Would help identify obstacles, targets, landing sites, dangerous areas
- Would help line up depth map with edge maps

[Farabet et al. ICML 2012, PAMI 2013]
Scene Parsing/Labeling: ConvNet Architecture

- Each output sees a large input context:
 - 46×46 window at full rez; 92×92 at $\frac{1}{2}$ rez; 184×184 at $\frac{1}{4}$ rez
 - $[7 \times 7 \text{conv}] - [2 \times 2 \text{pool}] - [7 \times 7 \text{conv}] - [2 \times 2 \text{pool}] - [7 \times 7 \text{conv}] -$
 - Trained supervised on fully-labeled images

![Diagram showing the ConvNet architecture with layers and features](image-url)
Method 1: majority over super-pixel regions

Superpixel boundaries

Majority Vote Over Superpixels

Categories aligned With region boundaries

“soft” categories scores

Multi-scale ConvNet

Features from Convolutional net (d=768 per pixel)

[Farabet et al. IEEE T. PAMI 2013]
Stanford Background Dataset [Gould 1009]: 8 categories

<table>
<thead>
<tr>
<th>Method</th>
<th>Pixel Acc.</th>
<th>Class Acc.</th>
<th>CT (sec.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gould et al. 2009 [14]</td>
<td>76.4%</td>
<td>-</td>
<td>10 to 600s</td>
</tr>
<tr>
<td>Munoz et al. 2010 [32]</td>
<td>76.9%</td>
<td>66.2%</td>
<td>12s</td>
</tr>
<tr>
<td>Tighe et al. 2010 [46]</td>
<td>77.5%</td>
<td>-</td>
<td>10 to 300s</td>
</tr>
<tr>
<td>Socher et al. 2011 [45]</td>
<td>78.1%</td>
<td>-</td>
<td>?</td>
</tr>
<tr>
<td>Kumar et al. 2010 [22]</td>
<td>79.4%</td>
<td>-</td>
<td>< 600s</td>
</tr>
<tr>
<td>Lempitzky et al. 2011 [28]</td>
<td>81.9%</td>
<td>72.4%</td>
<td>> 60s</td>
</tr>
<tr>
<td>singlescale convnet</td>
<td>66.0 %</td>
<td>56.5 %</td>
<td>0.35s</td>
</tr>
<tr>
<td>multiscale convnet</td>
<td>78.8 %</td>
<td>72.4%</td>
<td>0.6s</td>
</tr>
<tr>
<td>multiscale net + superpixels</td>
<td>80.4%</td>
<td>74.56%</td>
<td>0.7s</td>
</tr>
<tr>
<td>multiscale net + gPb + cover</td>
<td>80.4%</td>
<td>75.24%</td>
<td>61s</td>
</tr>
<tr>
<td>multiscale net + CRF on gPb</td>
<td>81.4%</td>
<td>76.0%</td>
<td>60.5s</td>
</tr>
</tbody>
</table>

[Farabet et al. IEEE T. PAMI 2013]
Scene Parsing/Labeling: Performance

<table>
<thead>
<tr>
<th>Method</th>
<th>Pixel Acc.</th>
<th>Class Acc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liu et al. 2009 [31]</td>
<td>74.75%</td>
<td>-</td>
</tr>
<tr>
<td>Tighe et al. 2010 [44]</td>
<td>76.9%</td>
<td>29.4%</td>
</tr>
<tr>
<td>raw multiscale net₁</td>
<td>67.9%</td>
<td>45.9%</td>
</tr>
<tr>
<td>multiscale net + superpixels₁</td>
<td>71.9%</td>
<td>50.8%</td>
</tr>
<tr>
<td>multiscale net + cover₁</td>
<td>72.3%</td>
<td>50.8%</td>
</tr>
<tr>
<td>multiscale net + cover₂</td>
<td>78.5%</td>
<td>29.6%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>Pixel Acc.</th>
<th>Class Acc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tighe et al. 2010 [44]</td>
<td>66.9%</td>
<td>7.6%</td>
</tr>
<tr>
<td>raw multiscale net₁</td>
<td>37.8%</td>
<td>12.1%</td>
</tr>
<tr>
<td>multiscale net + superpixels₁</td>
<td>44.1%</td>
<td>12.4%</td>
</tr>
<tr>
<td>multiscale net + cover₁</td>
<td>46.4%</td>
<td>12.5%</td>
</tr>
<tr>
<td>multiscale net + cover₂</td>
<td>67.8%</td>
<td>9.5%</td>
</tr>
</tbody>
</table>

SIFT Flow Dataset
[Liu 2009]: 33 categories
Barcelona dataset
[Tighe 2010]: 170 categories.
Scene Parsing/Labeling: SIFT Flow dataset (33 categories)

Samples from the SIFT-Flow dataset (Liu)

[Farabet et al. ICML 2012, PAMI 2013]
Scene Parsing/Labeling: SIFT Flow dataset (33 categories)

[Farabet et al. ICML 2012, PAMI 2013]
Scene Parsing/Labeling

[Farabet et al. ICML 2012, PAMI 2013]
Scene Parsing/Labeling

[Farabet et al. ICML 2012, PAMI 2013]
Scene Parsing/Labeling

[Farabet et al. ICML 2012, PAMI 2013]
Scene Parsing/Labeling

- No post-processing
- Frame-by-frame
- ConvNet runs at 50ms/frame on Virtex-6 FPGA hardware

 But communicating the features over ethernet limits system performance
Temporal Consistency

- Spatio-Temporal Super-Pixel segmentation
 - [Couprie et al ICIP 2013]
 - [Couprie et al JMLR under review]
 - Majority vote over super-pixels

Independent segmentations S'_1, S'_2, and S'_3

Temporally consistent segmentations $S_1(=S'_1)$, S_2, and S_3
Causal method for temporal consistency

[Couprie, Farabet, Najman, LeCun ICLR 2013, ICIP 2013]
NYU RGB-D Dataset

Captured with a Kinect on a steadycam
Results

Depth helps a bit
- Helps a lot for floor and props
- Helps surprisingly little for structures, and hurts for furniture

<table>
<thead>
<tr>
<th></th>
<th>Ground</th>
<th>Furniture</th>
<th>Props</th>
<th>Structure</th>
<th>Class Acc.</th>
<th>Pixel Acc.</th>
<th>Comput. time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silberman et al. (2012)</td>
<td>68</td>
<td>70</td>
<td>42</td>
<td>59</td>
<td>59.6</td>
<td>58.6</td>
<td>>3</td>
</tr>
<tr>
<td>Cadena and Kosecka (2013)</td>
<td>87.9</td>
<td>64.1</td>
<td>31.0</td>
<td>77.8</td>
<td>65.2</td>
<td>66.9</td>
<td>1.7</td>
</tr>
<tr>
<td>Multiscale convnet</td>
<td>68.1</td>
<td>51.1</td>
<td>29.9</td>
<td>87.8</td>
<td>59.2</td>
<td>63.0</td>
<td>0.7</td>
</tr>
<tr>
<td>Multiscale+depth convnet</td>
<td>87.3</td>
<td>45.3</td>
<td>35.5</td>
<td>86.1</td>
<td>63.5</td>
<td>64.5</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Scene Parsing/Labeling on RGB+Depth Images

Ground truths

Our results

[Couprie, Farabet, Najman, LeCun ICLR 2013, ICIP 2013]
Scene Parsing/Labeling on RGB+Depth Images

[Couprie, Farabet, Najman, LeCun ICLR 2013, ICIP 2013]
Temporal consistency

(a) Output of the Multiscale convnet trained using depth information - frame by frame

(b) Results smoothed temporally using Couprie et al. (2013a)

[Couprie, Farabet, Najman, LeCun ICLR 2013]
[Couprie, Farabet, Najman, LeCun ICIP 2013]
[Couprie, Farabet, Najman, LeCun submitted to JMLR]
Semantic Segmentation on RGB+D Images and Videos

[Couprie, Farabet, Najman, LeCun ICLR 2013, ICIP 2013]
Self-Learning ConvNet for Scene Labeling
Vision-Based Navigation for Off-Road Robots
Getting a robot to drive autonomously in unknown terrain solely from vision (camera input).

Our team (NYU/Net-Scale Technologies Inc.) was one of 8 participants funded by DARPA.

All teams received identical robots and can only modify the software (not the hardware).

The robot is given the GPS coordinates of a goal, and must drive to the goal as fast as possible. The terrain is unknown in advance. The robot is run 3 times through the same course.

Long-Range Obstacle Detection with on-line, self-trained ConvNet

Uses temporal consistency!
Obstacle Detection at Short Range: Stereovision

Obstacles overlaid with camera image

Camera image Detected obstacles (red)
But Stereovision Doesn't work at long range

- Stereo is only good up to about 10 meters.
- But not seeing past 10 meters is like driving in a fog or a snowstorm!
Long Range Vision with a Convolutional Net

Pre-processing (125 ms)
- Ground plane estimation
- Horizon leveling
- Conversion to YUV + local contrast normalization
- Scale invariant pyramid of distance-normalized image “bands”
Convolutional Net Architecture

100 features per 3x12x25 input window

YUV image band
20-36 pixels tall,
36-500 pixels wide

YUV input

100@25x121
CONVOLUTIONS (6x5)

20@30x125
MAX SUBSAMPLING (1x4)

20@30x484
CONVOLUTIONS (7x6)

3@36x484
Scene Labeling with ConvNet + online learning

Image Labeling for Off-Road Robots [Hadsell JFR 2008]
- ConvNet labels pixels as one of 3 categories
- Traversable/flat (green), non traversible (red), foot of obstacle (purple)
- Labels obtained from stereo vision and SLAM
Long Range Vision Results

Input image

Stereo Labels

Classifier Output

Input image

Stereo Labels

Classifier Output
Long Range Vision Results

Input image

Stereo Labels

Classifier Output

Input image

Stereo Labels

Classifier Output
Body Pose Estimation
Pose Estimation and Attribute Recovery with ConvNets

Pose-Aligned Network for Deep Attribute Modeling

[Zhang et al. CVPR 2014] (Facebook AI Research)

(a) Highest scoring results for people wearing glasses.

(b) Highest scoring results for people wearing a hat.

Real-time hand pose recovery

[Tompson et al. Trans. on Graphics 14]

Body pose estimation [Tompson et al. ICLR, 2014]
Person Detection and Pose Estimation

Person Detection and Pose Estimation

SPATIAL MODEL

Start with a tree graphical model

\textbf{MRF} over spatial locations

Joint Distribution:

$$P(f, s, e, w) = \frac{1}{Z} \prod_{i,j} \Psi(x_i, x_j) \prod_i \Phi(x_i, \tilde{x}_i)$$

local evidence function

compatibility function

latent / hidden

observed

Y LeCun
Start with a tree graphical model

... And approximate it

\[
 b(f) = \Phi(f) \prod_i (\Phi(x_i) \ast \Psi(f | x_i) + c(f | x_i))
\]
FLIC\(^{(1)}\)
Elbow

FLIC\(^{(1)}\)
Wrist

LSP\(^{(2)}\)
Arms

LSP\(^{(1)}\)
Legs

(1) B. Sapp and B. Taskar. MODEC: Multimodel decomposition models for human pose estimation. CVPR'13
(2) S. Johnson and M. Everingham. Learning Effective Human Pose Estimation for Inaccurate Annotation. CVPR'11
Form Reading: AT&T 1994
Check reading: AT&T/NCR 1996 (read 10-20% of all US checks in 2000)
Handwriting recognition: Microsoft early 2000
Face and person detection: NEC 2005, France Telecom late 2000s.
Gender and age recognition: NEC 2010 (vending machines)
OCR in natural images: Google 2013 (StreetView house numbers)
Photo tagging: Google 2013
Image Search by Similarity: Baidu 2013
Since early 2014, the number of deployed applications of ConvNets has exploded
Many applications at Facebook, Google, Baidu, Microsoft, IBM, NEC, Yahoo.....
Speech recognition, face recognition, image search, content filtering/ranking,....
Tens of thousands of servers run ConvNets continuously every day.
Software Tools and Hardware Acceleration for Convolutional Networks
Torch7

- based on the LuaJIT language
- Simple and lightweight dynamic language (widely used for games)
- Multidimensional array library with CUDA and OpenMP backends
- FAST: Has a native just-in-time compiler
- Has an unbelievably nice foreign function interface to call C/C++ functions from Lua

Torch7 is an extension of Lua with

- Multidimensional array engine
- A machine learning library that implements multilayer nets, convolutional nets, unsupervised pre-training, etc
- Various libraries for data/image manipulation and computer vision
- Used at Facebook AI Research, Google (Deep Mind, Brain), Intel, and many academic groups and startups

Single-line installation on Ubuntu and Mac OSX:

- http://torch.ch

Torch7 Cheat sheet (with links to libraries and tutorials):
 - https://github.com/torch/torch7/wiki/Cheatsheet
Example: building a Neural Net in Torch7

Net for SVHN digit recognition
10 categories
Input is 32x32 RGB (3 channels)
1500 hidden units

Creating a 2-layer net
Make a cascade module
Reshape input to vector
Add Linear module
Add tanh module
Add Linear Module
Add log softmax layer
Create loss function module

Noutputs = 10;
nfeats = 3; Width = 32; height = 32
ninputs = nfeats*width*height
nhiddens = 1500

-- Simple 2-layer neural network
model = nn.Sequential()
model:add(nn.Reshape(ninputs))
model:add(nn.Linear(ninputs,nhiddens))
model:add(nn.Tanh())
model:add(nn.Linear(nhiddens,noutputs))
model:add(nn.LogSoftMax())
criterion = nn.ClassNLLCriterion()

See Torch7 example at http://bit.ly/16tyLAx
Collaboration NYU-Purdue: Eugenio Culurciello's e-Lab.

Running on Picocomputing 8x10cm high-performance FPGA board

- Virtex 6 LX240T: 680 MAC units, 20 neuflow tiles

Full scene labeling at 20 frames/sec (50ms/frame) at 320x240

board with Virtex-6
NewFlow: Architecture

A Runtime Reconfigurable Dataflow Architecture

- **PT**: Passive Processing Tiles
- **MUX.**: Multiplexer
- **Mem**: Memory
- **CPU**: RISC CPU
- **DMA**: Multi-port memory controller
- **MEM**: Memory

- **Global Data Lines**
- **Runtime Config Bus**

Grid of passive processing tiles (PTs) ([x20 on a Virtex6 LX240T])

Multi-port memory controller (DMA) ([x12 on a V6 LX240T])

RISC CPU, to reconfigure tiles and data paths, at runtime

Global network-on-chip to allow fast reconfiguration
NewFlow: Processing Tile Architecture

Term-by-term streaming operators (MUL, DIV, ADD, SUB, MAX)

configurable bank of FIFOs, for stream buffering, up to 10kB per PT

configurable router, to stream data in and out of the tile, to neighbors or DMA ports

configurable piece-wise linear or quadratic mapper

full 1/2D parallel convolver with 100 MAC units

[Virtex6 LX240T]
NewFlow ASIC: 2.5x5 mm, 45nm, 0.6Watts, >300GOPS

Collaboration Purdue-NYU: Eugenio Culurciello's e-Lab

Suitable for vision-enabled embedded and mobile devices

(but the fabrication was botched...)

[Pham, Jelaca, Farabet, Martini, LeCun, Culurciello 2012]
<table>
<thead>
<tr>
<th></th>
<th>Intel I7 4 cores</th>
<th>neuFlow Virtex4</th>
<th>neuFlow Virtex 6</th>
<th>nVidia GT335m</th>
<th>NeuFlow ASIC 45nm</th>
<th>nVidia GTX480*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak GOP/sec</td>
<td>40</td>
<td>40</td>
<td>160</td>
<td>182</td>
<td>320</td>
<td>1350</td>
</tr>
<tr>
<td>Actual GOP/sec</td>
<td>12</td>
<td>37</td>
<td>147</td>
<td>54</td>
<td>300</td>
<td>294</td>
</tr>
<tr>
<td>FPS</td>
<td>14</td>
<td>46</td>
<td>182</td>
<td>67</td>
<td>364</td>
<td>374</td>
</tr>
<tr>
<td>Power (W)</td>
<td>50</td>
<td>10</td>
<td>10</td>
<td>30</td>
<td>0.6</td>
<td>220</td>
</tr>
<tr>
<td>Embed? (GOP/s/W)</td>
<td>0.24</td>
<td>3.7</td>
<td>14.7</td>
<td>1.8</td>
<td>490</td>
<td>1.34</td>
</tr>
</tbody>
</table>

NeuFlow Virtex6 can run the semantic labeling system at 50ms/frame

* performance of Nvidia GPU is higher when using minibatch training
Deep Learning in Natural Language Processing
What about Language? Word Embedding

Word Embedding in continuous vector spaces
- [Bengio 2003][Collobert & Weston 2010]
- Word2Vec [Mikolov 2011]
- Predict a word from previous words and/or following words

Neural net of some kind

what are the major languages spoken in greece?
What about Language? Word Embedding
Beijing – China + France = Paris
Embedding sentences into vector spaces

- Using a convolutional net or a recurrent net.

What are the major languages spoken in Greece?
“Who did Clooney marry in 1987?”

Frebase subgraph

Clooney

Subgraph of a candidate answer (here K. Preston)

Detection of Freebase entity in the question

Score

How the candidate answer fits the question

Dot product

Freebase embeddings lookup table

1-hot encoding of the subgraph

1-hot encoding of the question

Embedding of the subgraph

Embedding of the question

Word embeddings lookup table
what are bigos?

 "stew"

what are dallas cowboys colors?

 "navy_blue", "royal_blue", "blue", "white", "silver"

how is egyptian money called?

 "egyptian_pound"

what are fun things to do in sacramento ca?

 "sacramento_zoo", "raging_waters_sacramento", "sutter_s_fort",
 "b_street_theatre", "sacramento_zoo", "california_state_capitol_museum",

how are john terry's children called?

 "georgie_john_terry", "summer_rose_terry"

what are the major languages spoken in greece?

 "greek_language", "albanian_language"

what was laura ingalls wilder famous for?

 "writer", "author"
who plays sheldon cooper mother on the big bang theory?
 ["jim_parsons", "jim_parsons"]
who does peyton manning play football for?
 ["denver_broncos", "indianapolis_colts", "denver_broncos"]
who did vladimir lenin marry?
 ["nadezhda_krupskaya", "nadezhda_krupskaya"]
where was teddy roosevelt's house?
 ["new_york_city", "manhattan"]
who developed the tcp ip reference model?
 ["vint_cerf", "robert_e._kahn", "computer_scientist", "engineer"]
Recurrent Nets and LSTM
[Sutskever et al. NIPS 2014]

- Multiple layers of very large LSTM recurrent modules
- English sentence is read in and encoded
- French sentence is produced after the end of the English sentence
- Accuracy is very close to state of the art.

This is a sentence in English

Ceci est une phrase en anglais
[Sutskever et al. NIPS 2014]

- Multiple layers of very large LSTM recurrent modules
- English sentence is read in and encoded
- French sentence is produced after the end of the English sentence
- Accuracy is very close to state of the art.

<table>
<thead>
<tr>
<th>Our model</th>
<th>Truth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ulrich UNK, membre du conseil d’administration du constructeur automobile Audi, affirme qu’ il s’ agit d’une pratique courante depuis des années pour que les téléphones portables puissent être collectés avant les réunions du conseil d’ administration afin qu’ ils ne soient pas utilisés comme appareils d’ écoute à distance.</td>
<td>Ulrich Hackenberg, membre du conseil d’ administration du constructeur automobile Audi, déclare que la collecte des téléphones portables avant les réunions du conseil, afin qu’ ils ne puissent pas être utilisés comme appareils d’ écoute à distance, est une pratique courante depuis des années.</td>
</tr>
</tbody>
</table>
Learning to Execute Programs

[Zaremba & Sutskever 2014]

Input:

```
j=8584
for x in range(8):
    j+=920
b=(1500+j)
print((b+7567))
```

Target: 25011.

Input:

```
i=8827
c=(i-5347)
print((c+8704) if 2641<8500 else 5308)
```

Target: 12184.

Input:

```
h=(3681 if 9279<3033 else 6191)
for x in range(7):h-=9910
print(h).
```

Target: -63179.

"Baseline" prediction: -62049.

"Naïve" prediction: -63117.

"Mix" prediction: -62013.

"Combined" prediction: -62009.

Input:

```
b=8494
for x in range(2):b+=7484
print((b*14)).
```

Target: 328468.

"Baseline" prediction: 318004.

"Naïve" prediction: 338088.

"Mix" prediction: 329220.

"Combined" prediction: 338080.
Embedding mathematical operators (or sequence thereof) in a vector space
- Encodes expressions by its evaluation of N random integer values ($N=1000$)
- If two expressions produce identical vectors, they are deemed identical
- Learn representations of expression.
- Simplifies polynomial matrix expressions.

(a) $(A \cdot A)' \cdot \text{sum}(A, 2)$

(b) $(A' \cdot A') \cdot \text{sum}(A, 2)$
Memory Network (MemNN)
Recurrent networks cannot remember things for very long
- The cortex only remember things for 20 seconds

We need a “hippocampus” (a separate memory module)
- LSTM [Hochreiter 1997], registers
- Memory networks [Weston et al. 2014] (FAIR), associative memory
- NTM [DeepMind 2014], “tape”.

![Diagram showing Recurrent net and memory connection]
Memory Network
[Weston, Chopra, Bordes 2014]

Add a short-term memory to a network

I: (input feature map) – converts the incoming input to the internal feature representation.
G: (generalization) – updates old memories given the new input.
O: (output feature map) – produces a new output (in the feature representation space), given the new input and the current memory.
R: (response) – converts the output into the response format desired. For example, a textual response or an action.

Bilbo travelled to the cave.
Gollum dropped the ring there.
Bilbo took the ring.
Bilbo went back to the Shire.
Bilbo left the ring there.
Frodo got the ring.
Frodo journeyed to Mount-Doom.
Frodo dropped the ring there.
Sauron died.
Frodo went back to the Shire.
Bilbo travelled to the Grey-havens.
The End.
Where is the ring? A: Mount-Doom
Where is Bilbo now? A: Grey-havens
Where is Frodo now? A: Shire

http://arxiv.org/abs/1410.3916

<table>
<thead>
<tr>
<th>Method</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Fader et al., 2013)</td>
<td>0.54</td>
</tr>
<tr>
<td>(Bordes et al., 2014)</td>
<td>0.73</td>
</tr>
<tr>
<td>MemNN</td>
<td>0.71</td>
</tr>
<tr>
<td>MemNN (with BoW features)</td>
<td>0.79</td>
</tr>
</tbody>
</table>

Results on Question Answering Task

Fig. 2. An example story with questions correctly answered by a MemNN. The MemNN was trained on the simulation described in Section 4.2 and had never seen many of these words before, e.g. Bilbo, Frodo and Gollum.
The bAbI Tasks

Questions that an AI system ought to be able to answer
Our first task consists of questions where a single supporting fact, previously given, provides the answer.

We test simplest cases of this, by asking for the location of a person.

A small sample of the task is thus:

John is in the playground.
Bob is in the office.
Where is John? A: playground

This kind of synthetic data was already used with MemNNs.

It can be considered the simplest case of some real world QA datasets such as in Fader et al., ‘13.
(2) Factoid QA with Two Supporting Facts

A harder task is to answer questions where two supporting statements have to be chained to answer the question:

John is in the playground.
Bob is in the office.
John picked up the football.
Bob went to the kitchen.
Where is the football? A: playground
Where was Bob before the kitchen? A: office

E.g. to answer the first question Where is the football? both John picked up the football and John is in the playground are supporting facts.

Again, this kind of task was already used with MemNNs.
(2) **Shuffled Factoid QA with Two Supporting Facts**

- Note that, to show the difficulty of these tasks for a learning machine with no other knowledge we can shuffle the letters of the alphabet and produce equivalent datasets:

 Sbdm ip im vdu yonrckblms.
 Abf ip im vdu bhhigu.
 Sbdm yigaus ly vdu hbbvfnoo.
 Abf zumv vb vdu aivgdum.
 Mduku ip vdu hbbvfnoo?
 A: yonrckblms
 Mduku znp Abf fuhbku vdu aivgdum?
 A: bhhigu
Similarly, one can make a task with three supporting facts:

John picked up the apple.
John went to the office.
John went to the kitchen.
John dropped the apple.
Where was the apple before the kitchen?
A: office

The first three statements are all required to answer this.
(4) Two Argument Relations: Subject vs. Object

To answer questions the ability to differentiate and recognize subjects and objects is crucial.

We consider the extreme case: sentences feature re-ordered words:

The office is north of the bedroom.
The bedroom is north of the bathroom.
What is north of the bedroom? A: office
What is the bedroom north of?
A: bathroom

Note that the two questions above have exactly the same words, but in a different order, and different answers.

So a bag-of-words will not work.
Similarly, sometimes one needs to differentiate three separate arguments, such as in the following task:

Mary gave the cake to Fred.
Fred gave the cake to Bill.
Jeff was given the milk by Bill.
Who gave the cake to Fred? A: Mary
Who did Fred give the cake to? A: Bill
What did Jeff receive? A: milk
Who gave the milk? A: Bill

The last question is potentially the hardest for a learner as the first two can be answered by providing the actor that is not mentioned in the question.
(6) Yes/No Questions

- This task tests, in the simplest case possible (with a single supporting fact) the ability of a model to answer true/false type questions:

| John is in the playground. |
| Daniel picks up the milk. |
| Is John in the classroom? |
| Does Daniel have the milk? |
| A: no |
| A: yes |
This task tests the ability of the QA system to perform simple counting operations, by asking about the number of objects with a certain property:

Daniel picked up the football.
Daniel dropped the football.
Daniel got the milk.
Daniel took the apple.
How many objects is Daniel holding?
A: two
(8) Lists/Sets

While many of our tasks are designed to have single word answers for simplicity, this task tests the ability to produce a set of single word answers in the form of a list:

Daniel picks up the football.
Daniel drops the newspaper.
Daniel picks up the milk.
What is Daniel holding? A:milk, football

The task above can be seen as a QA task related to database search.
Note that we could also consider the following question types:
Intersection: Who is in the park carrying food?
Union: Who has milk or cookies?
Set difference: Who is in the park apart from Bill?
However, we leave those for future work.
(9) Simple Negation

- We test one of the simplest types of negation, that of supporting facts that imply a statement is false:

 Sandra travelled to the office.
 Fred is no longer in the office.
 Is Fred in the office? A: no
 Is Sandra in the office? A: yes

The Yes/No task (6) is a prerequisite.

Slightly harder: we could add things like “Is Fred with Sandra?”
This task tests if we can model statements that describe possibilities rather than certainties:

John is either in the classroom or the playground.
Sandra is in the garden.
Is John in the classroom? A: maybe
Is John in the office? A: no

The Yes/No task (6) is a prerequisite.

Slightly harder: we could add things like “Is John with Sandra?”
Basic Coreference

This task tests the simplest type of coreference, that of detecting the nearest referent, for example:

Daniel was in the kitchen.
Then he went to the studio.
Sandra was in the office.
Where is Daniel? A: studio

Next level of difficulty: flip order of last two statements, and it has to learn the difference between ‘he’ and ‘she’.

Much harder difficulty: adapt a real coref dataset into a question answer format.
(12) Conjunction

- This task tests referring to multiple subjects in a single statement, for example:

 Mary and Jeff went to the kitchen. Then Jeff went to the park. Where is Mary? A: kitchen
This task tests coreference in the case where the pronoun can refer to multiple actors:

Daniel and Sandra journeyed to the office.
Then they went to the garden.
Sandra and John travelled to the kitchen.
After that they moved to the hallway.
Where is Daniel? A: garden
While our tasks so far have included time implicitly in the order of the statements, this task tests understanding the use of time expressions within the statements:

In the afternoon Julie went to the park. Yesterday Julie was at school. Julie went to the cinema this evening. Where did Julie go after the park?
A: cinema

Much harder difficulty: adapt a real time expression labeling dataset into a question answer format, e.g. Uzzaman et al., ‘12.
This task tests basic deduction via inheritance of properties:

Sheep are afraid of wolves.
Cats are afraid of dogs.
Mice are afraid of cats.
Gertrude is a sheep.
What is Gertrude afraid of? A:wolves

Deduction should prove difficult for MemNNs because it effectively involves search, although our setup might be simple enough for it.
This task tests basic induction via inheritance of properties:

Lily is a swan.
Lily is white.
Greg is a swan.
What color is Greg? A: white

Induction should prove difficult for MemNNs because it effectively involves search, although our setup might be simple enough for it.
(17) Positional Reasoning

This task tests spatial reasoning, one of many components of the classical SHRDLU system:

The triangle is to the right of the blue square. The red square is on top of the blue square. The red sphere is to the right of the blue square.

Is the red sphere to the right of the blue square? A: yes

Is the red square to the left of the triangle? A: yes

The Yes/No task (6) is a prerequisite.
This task requires reasoning about relative size of objects and is inspired by the commonsense reasoning examples in the Winograd schema challenge:

The football fits in the suitcase.
The suitcase fits in the cupboard.
The box of chocolates is smaller than the football.
Will the box of chocolates fit in the suitcase?
A: yes

Tasks 3 (three supporting facts) and 6 (Yes/No) are prerequisites.
In this task the goal is to find the path between locations:

The kitchen is north of the hallway.
The den is east of the hallway.
How do you go from den to kitchen?
A: west, north

This is going to prove difficult for MemNNs because it effectively involves search.
(The original MemNN can also output only one word [])
(20) Reasoning about Agent’s Motivations

- This task tries to ask *why* an agent performs a certain action.
- It addresses the case of actors being in a given state (hungry, thirsty, tired, ...) and the actions they then take:

 John is hungry.
 John goes to the kitchen.
 John eats the apple.
 Daniel is hungry.
 Where does Daniel go? A:kitchen
 Why did John go to the kitchen? A:hungry
One way of solving these tasks: Memory Networks!!

MemNNs have four component networks (which may or may not have shared parameters):

- **I**: (input feature map) this converts incoming data to the internal feature representation.

- **G**: (generalization) this updates memories given new input.

- **O**: this produces new output (in feature representation space) given the memories.

- **R**: (response) converts output O into a response seen by the outside world.
Experiments

- **Protocol**: 1000 training QA pairs, 1000 for test.

“Weakly supervised” methods:

- Ngram baseline, uses bag of Ngram features from sentences that share a word with the question.

- LSTM

Fully supervised methods (for train data, have supporting facts labeled):

- Original MemNNs, *and all our variants.*
Table 1. Test accuracy (%) on our 20 Tasks for various methods (training with 1000 training examples on each). Our proposed extensions to MemNNs are in columns 5-9: with adaptive memory (AM), N-grams (NG), nonlinear matching function (NL), multilinear matching (ML), and combinations thereof. Bold numbers indicate tasks where our extensions achieve ≥ 95% accuracy but the original MemNN model of (Weston et al., 2014) did not. The last two columns (10-11) give extra analysis of the MemNN_{AM + NG + NL} method. Column 10 gives the amount of training data for each task needed to obtain ≥ 95% accuracy, or FAIL if this is not achievable with 1000 training examples. The final column gives the accuracy when training on all data at once, rather than separately.

<table>
<thead>
<tr>
<th>TASK</th>
<th>N-grams</th>
<th>LSTM</th>
<th>MemNN_{Weston et al., 2014}</th>
<th>MemNN_{AM + NG}</th>
<th>MemNN_{AM + NL}</th>
<th>MemNN_{AM + NL + NG}</th>
<th>MemNN_{AM + NL + ML}</th>
<th>MemNN_{AM + NG + NL}</th>
<th>No. of ex. req. ≥ 95</th>
<th>MultiTask Training</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 - Single Supporting Fact</td>
<td>36</td>
<td>50</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>250 ex.</td>
<td>100</td>
</tr>
<tr>
<td>3.2 - Two Supporting Facts</td>
<td>2</td>
<td>20</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>500 ex.</td>
<td>100</td>
</tr>
<tr>
<td>3.3 - Three Supporting Facts</td>
<td>7</td>
<td>20</td>
<td>20</td>
<td>99</td>
<td>99</td>
<td>99</td>
<td>99</td>
<td>100</td>
<td>500 ex.</td>
<td>98</td>
</tr>
<tr>
<td>3.4 - Two Arg. Relations</td>
<td>50</td>
<td>61</td>
<td>71</td>
<td>69</td>
<td>73</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>500 ex.</td>
<td>80</td>
</tr>
<tr>
<td>3.5 - Three Arg. Relations</td>
<td>20</td>
<td>70</td>
<td>83</td>
<td>83</td>
<td>86</td>
<td>86</td>
<td>98</td>
<td>100</td>
<td>1000 ex.</td>
<td>99</td>
</tr>
<tr>
<td>3.6 - Yes/No Questions</td>
<td>49</td>
<td>48</td>
<td>47</td>
<td>52</td>
<td>53</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>500 ex.</td>
<td>100</td>
</tr>
<tr>
<td>3.7 - Counting</td>
<td>52</td>
<td>49</td>
<td>68</td>
<td>78</td>
<td>86</td>
<td>86</td>
<td>90</td>
<td>90</td>
<td>85</td>
<td>FAIL</td>
</tr>
<tr>
<td>3.8 - Lists/Sets</td>
<td>40</td>
<td>45</td>
<td>77</td>
<td>88</td>
<td>94</td>
<td>94</td>
<td>91</td>
<td>91</td>
<td>FAIL</td>
<td>93</td>
</tr>
<tr>
<td>3.9 - Simple Negation</td>
<td>62</td>
<td>64</td>
<td>65</td>
<td>71</td>
<td>63</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>500 ex.</td>
<td>100</td>
</tr>
<tr>
<td>3.10 - Indefinite Knowledge</td>
<td>45</td>
<td>44</td>
<td>59</td>
<td>57</td>
<td>54</td>
<td>97</td>
<td>96</td>
<td>98</td>
<td>1000 ex.</td>
<td>98</td>
</tr>
<tr>
<td>3.11 - Basic Coreference</td>
<td>29</td>
<td>72</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>250 ex.</td>
<td>100</td>
</tr>
<tr>
<td>3.12 - Conjunction</td>
<td>9</td>
<td>74</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>250 ex.</td>
<td>100</td>
</tr>
<tr>
<td>3.13 - Compound Coreference</td>
<td>26</td>
<td>94</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>250 ex.</td>
<td>100</td>
</tr>
<tr>
<td>3.15 - Basic Deduction</td>
<td>20</td>
<td>21</td>
<td>74</td>
<td>73</td>
<td>100</td>
<td>77</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>3.16 - Basic Induction</td>
<td>43</td>
<td>23</td>
<td>27</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>3.17 - Positional Reasoning</td>
<td>46</td>
<td>51</td>
<td>54</td>
<td>46</td>
<td>49</td>
<td>57</td>
<td>60</td>
<td>65</td>
<td>FAIL</td>
<td>72</td>
</tr>
<tr>
<td>3.18 - Size Reasoning</td>
<td>52</td>
<td>52</td>
<td>57</td>
<td>50</td>
<td>74</td>
<td>54</td>
<td>89</td>
<td>95</td>
<td>1000 ex.</td>
<td>93</td>
</tr>
<tr>
<td>3.19 - Path Finding</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>9</td>
<td>3</td>
<td>15</td>
<td>34</td>
<td>36</td>
<td>FAIL</td>
<td>19</td>
</tr>
<tr>
<td>3.20 - Agent’s Motivations</td>
<td>76</td>
<td>91</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>250 ex.</td>
<td>100</td>
</tr>
<tr>
<td>Mean Performance</td>
<td>34</td>
<td>49</td>
<td>75</td>
<td>79</td>
<td>83</td>
<td>87</td>
<td>93</td>
<td>93</td>
<td>250 ex.</td>
<td>92</td>
</tr>
</tbody>
</table>
Unsupervised Learning
Learning an energy function (or contrast function) that takes
- Low values on the data manifold
- Higher values everywhere else
The energy surface is a “contrast function” that takes low values on the data manifold, and higher values everywhere else

- Special case: energy = negative log density
- Example: the samples live in the manifold

\[Y_2 = (Y_1)^2 \]
Transforming Energies into Probabilities (if necessary)

- The energy can be interpreted as an unnormalized negative log density
- Gibbs distribution: Probability proportional to $\exp(-\text{energy})$
 - Beta parameter is akin to an inverse temperature
- Don't compute probabilities unless you absolutely have to
 - Because the denominator is often intractable

$$P(Y|W) = \frac{e^{-\beta E(Y,W)}}{\int_y e^{-\beta E(y,W)}}$$

$$E(Y, W) \propto -\log P(Y|W)$$
Learning the Energy Function

- parameterized energy function $E(Y,W)$
 - Make the energy low on the samples
 - Make the energy higher everywhere else
 - Making the energy low on the samples is easy
 - But how do we make it higher everywhere else?
Seven Strategies to Shape the Energy Function

1. build the machine so that the volume of low energy stuff is constant
 - PCA, K-means, GMM, square ICA

2. push down of the energy of data points, push up everywhere else
 - Max likelihood (needs tractable partition function)

3. push down of the energy of data points, push up on chosen locations
 - contrastive divergence, Ratio Matching, Noise Contrastive Estimation, Minimum Probability Flow

4. minimize the gradient and maximize the curvature around data points
 - score matching

5. train a dynamical system so that the dynamics goes to the manifold
 - denoising auto-encoder

6. use a regularizer that limits the volume of space that has low energy
 - Sparse coding, sparse auto-encoder, PSD

7. if $E(Y) = \|Y - G(Y)\|^2$, make $G(Y)$ as "constant" as possible.
 - Contracting auto-encoder, saturating auto-encoder
1. build the machine so that the volume of low energy stuff is constant

PCA, K-means, GMM, square ICA...

PCA

\[E(Y) = \|W^T WY - Y\|^2 \]

K-Means,
Z constrained to 1-of-K code

\[E(Y) = \min_z \sum_i \|Y - W_i Z_i\|^2 \]
#2: push down of the energy of data points, push up everywhere else

Max likelihood (requires a tractable partition function)

Maximizing $P(Y|W)$ on training samples

$$P(Y|W) = \frac{e^{-\beta E(Y,W)}}{\int_y e^{-\beta E(y,W)}}$$

Minimizing $-\log P(Y,W)$ on training samples

$$L(Y, W) = E(Y, W) + \frac{1}{\beta} \log \int_y e^{-\beta E(y,W)}$$
#2: push down of the energy of data points, push up everywhere else

Gradient of the negative log-likelihood loss for one sample Y:

\[
\frac{\partial L(Y, W)}{\partial W} = \frac{\partial E(Y, W)}{\partial W} - \int_y P(y|W) \frac{\partial E(y, W)}{\partial W}
\]

Gradient descent:

\[
W \leftarrow W - \eta \frac{\partial L(Y, W)}{\partial W}
\]

Pushes down on the energy of the samples

Pulls up on the energy of low-energy Y's
#3. push down of the energy of data points, push up on chosen locations

contrastive divergence, Ratio Matching, Noise Contrastive Estimation, Minimum Probability Flow

Contrastive divergence: basic idea
- Pick a training sample, lower the energy at that point
- From the sample, move down in the energy surface with noise
- Stop after a while
- Push up on the energy of the point where we stopped
- This creates grooves in the energy surface around data manifolds
- CD can be applied to any energy function (not just RBMs)

Persistent CD: use a bunch of “particles” and remember their positions
- Make them roll down the energy surface with noise
- Push up on the energy wherever they are
- Faster than CD

RBM

\[
E(Y, Z) = -Z^T W Y \\
E(Y) = -\log \sum_z e^{Z^T W Y}
\]
#6. use a regularizer that limits the volume of space that has low energy

- Sparse coding, sparse auto-encoder, Predictive Sparse Decomposition
Energy Functions of Various Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Encoder</th>
<th>Decoder</th>
<th>Energy</th>
<th>Loss</th>
<th>Pull-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCA</td>
<td>$W'Y$</td>
<td>WZ</td>
<td>$|Y - WZ|^2$</td>
<td>$F(Y)$</td>
<td>dimens.</td>
</tr>
<tr>
<td>autoencoder</td>
<td>$\sigma(W_eY)$</td>
<td>W_dZ</td>
<td>$|Y - WZ|^2$</td>
<td>$F(Y)$</td>
<td>dimens.</td>
</tr>
<tr>
<td>sparse coding</td>
<td>$\sigma(W_eZ)$</td>
<td>W_dZ</td>
<td>$|Y - WZ|^2$</td>
<td>$F(Y)$</td>
<td>sparsity</td>
</tr>
<tr>
<td>K-Means</td>
<td>–</td>
<td>WZ</td>
<td>$|Y - WZ|^2$</td>
<td>$F(Y)$</td>
<td>1-of-N code</td>
</tr>
</tbody>
</table>

- **PCA (1 code unit)**
- **autoencoder (1 code unit)**
- **sparse coding (20 code units)**
- **K-Means (20 code units)**

- **2 dimensional toy dataset: spiral**
- **Visualizing energy surface**
 - (black = low, white = high)

Visualizing energy surface

PCA (1 code unit)

autoencoder (1 code unit)

sparse coding (20 code units)

K-Means (20 code units)
Dictionary Learning With Fast Approximate Inference: Sparse Auto-Encoders
How to Speed Up Inference in a Generative Model?

- **Factor Graph with an asymmetric factor**
- **Inference Z → Y is easy**
 - Run Z through deterministic decoder, and sample Y
- **Inference Y → Z is hard, particularly if Decoder function is many-to-one**
 - MAP: minimize sum of two factors with respect to Z
 - \(Z^* = \text{argmin}_z \text{ Distance}[\text{Decoder}(Z), Y] + \text{FactorB}(Z) \)
- **Examples:** K-Means (1 of K), Sparse Coding (sparse), Factor Analysis
Sparse linear reconstruction

Energy = reconstruction_error + code_prediction_error + code_sparsity

\[E(Y^i, Z) = \| Y^i - W_d Z \|^2 + \lambda \sum_j |z_j| \]

Inference is expensive: ISTA/FISTA, CGIHT, coordinate descent...

\[Y \rightarrow \hat{Z} = \arg\min_Z E(Y, Z) \]
#6. use a regularizer that limits the volume of space that has low energy

- Sparse coding, sparse auto-encoder, Predictive Sparse Decomposition
Encoder Architecture

Examples: most ICA models, Product of Experts

INPUT Y

Fast Feed-Forward Model

Factor A'

Encoder

Distance

Factor B

LATENT VARIABLE
Train a “simple” feed-forward function to predict the result of a complex optimization on the data points of interest

1. Find optimal Z_i for all Y_i; 2. Train Encoder to predict Z_i from Y_i
Why Limit the Information Content of the Code?

- Training sample
- Input vector which is NOT a training sample
- Feature vector
Why Limit the Information Content of the Code?

- Training sample
- Input vector which is NOT a training sample
- Feature vector

Training based on minimizing the reconstruction error over the training set
Why Limit the Information Content of the Code?

- Training sample
- Input vector which is NOT a training sample
- Feature vector

BAD: machine does not learn structure from training data!!

It just copies the data.
Why Limit the Information Content of the Code?

- Training sample
- Input vector which is NOT a training sample
- Feature vector

IDEA: reduce number of available codes.
Why Limit the Information Content of the Code?

- Training sample
- Input vector which is NOT a training sample
- Feature vector

IDEA: reduce number of available codes.
Why Limit the Information Content of the Code?

- Training sample
- Input vector which is NOT a training sample
- Feature vector

IDEA: reduce number of available codes.
Learning to Perform
Approximate Inference:
Predictive Sparse Decomposition
Sparse Auto-Encoders
Sparse auto-encoder: Predictive Sparse Decomposition (PSD)

\[E(Y^i, Z) = \|Y^i - W_d Z\|^2 + \|Z - g_e(W_e, Y^i)\|^2 + \lambda \sum_j |z_j| \]

\[g_e(W_e, Y^i) = \text{shrinkage}(W_e Y^i) \]

- Prediction the optimal code with a trained encoder
- Energy = reconstruction_error + code_prediction_error + code_sparsity

Regularized Encoder-Decoder Model (auto-Encoder) for Unsupervised Feature Learning

- **Encoder**: computes feature vector Z from input X
- **Decoder**: reconstructs input X from feature vector Z
- **Feature vector**: high dimensional and regularized (e.g. sparse)
- **Factor graph with energy function $E(X,Z)$ with 3 terms:**
 - Linear decoding function and reconstruction error
 - Non-Linear encoding function and prediction error term
 - Pooling function and regularization term (e.g. sparsity)

$$E(Y,Z) = \| Y - W_d Z \|^2 + \| Z - g_e(W_e, Y) \|^2 + \sum_j \sqrt{\sum_{k \in P_j} Z_k^2}$$
Basis functions (and encoder matrix) are digit parts
Training on natural images patches.

- 12X12
- 256 basis functions
Learned Features on natural patches: V1-like receptive fields
Learning to Perform Approximate Inference
LISTA
ISTA/FISTA: iterative algorithm that converges to optimal sparse code

INPUT $Y \xrightarrow{W_e} + \xrightarrow{sh()} \xrightarrow{S} Z$

Lateral Inhibition

$Z(t + 1) = \text{Shrinkage}_{\lambda/L} \left[Z(t) - \frac{1}{L} W_d^T (W_d Z(t) - Y) \right]$

ISTA/FISTA reparameterized:

$Z(t + 1) = \text{Shrinkage}_{\lambda/L} \left[W_e^T Y + S Z(t) \right]; \quad W_e = \frac{1}{L} W_d; \quad S = I - \frac{1}{L} W_d^T W_d$

LISTA (Learned ISTA): learn the W_e and S matrices to get fast solutions

[Gregor & LeCun, ICML 2010], [Bronstein et al. ICML 2012], [Rolfe & LeCun ICLR 2013]
Think of the FISTA flow graph as a recurrent neural net where W_e and S are trainable parameters.

Time-Unfold the flow graph for K iterations.

Learn the W_e and S matrices with “backprop-through-time”.

Get the best approximate solution within K iterations.
Learning ISTA (LISTA) vs ISTA/FISTA

The diagram compares the reconstruction error for different numbers of LISTA or FISTA iterations. The x-axis represents the number of iterations, while the y-axis shows the reconstruction error. The graph includes data points for FISTA (4x) (crosses), FISTA (1x) (red crosses), LISTA (4x) (blue circles), and LISTA (1x) (red circles).
LISTA with partial mutual inhibition matrix

Proportion of S matrix elements that are non-zero

Reconstruction Error

Smallest elements removed
Learning Coordinate Descent (LcoD): faster than LISTA

Reconstruction Error vs. Number of LISTA or FISTA iterations

- CoD (4x)
- CoD (1x)
- LCoD (4x)
- LCoD (1x)
Discriminative Recurrent Sparse Auto-Encoder (DrSAE)

- Rectified linear units
- Classification loss: cross-entropy
- Reconstruction loss: squared error
- Sparsity penalty: L_1 norm of last hidden layer
- Rows of W_d and columns of W_e constrained in unit sphere

[Rolfe & LeCun ICLR 2013]
Image = prototype + sparse sum of “parts” (to move around the manifold)
Replace the dot products with dictionary element by convolutions.

- Input Y is a full image
- Each code component Z_k is a feature map (an image)
- Each dictionary element is a convolution kernel

Regular sparse coding

\[E(Y, Z) = ||Y - \sum_{k} W_k Z_k||^2 + \alpha \sum_{k} |Z_k| \]

Convolutional S.C.

\[E(Y, Z) = ||Y - \sum_{k} W_k \ast Z_k||^2 + \alpha \sum_{k} |Z_k| \]

“deconvolutional networks” [Zeiler, Taylor, Fergus CVPR 2010]
Convolutional Formulation

- Extend sparse coding from **PATCH** to **IMAGE**

\[\mathcal{L}(x, z, \mathcal{D}) = \frac{1}{2} \|x - \sum_{k=1}^{K} D_k \ast z_k\|_2^2 + \sum_{k=1}^{K} \|z_k - f(W^k \ast x)\|_2^2 + \|z\|_1 \]

- **PATCH** based learning
- **CONVOLUTIONAL** learning
Filters and Basis Functions obtained with 1, 2, 4, 8, 16, 32, and 64 filters.
Phase 1: train first layer using PSD

\[\|Y^i - \tilde{Y}\|^2 \]
\[W_d Z \]
\[g_e(W_e, Y^i) \]
\[\|Z - \tilde{Z}\|^2 \]
\[\lambda \sum \]
\[|z_j| \]
Phase 1: train first layer using PSD

Phase 2: use encoder + absolute value as feature extractor

\(g_e(W_e, Y) \)
Phase 1: train first layer using PSD
Phase 2: use encoder + absolute value as feature extractor
Phase 3: train the second layer using PSD
Phase 1: train first layer using PSD
Phase 2: use encoder + absolute value as feature extractor
Phase 3: train the second layer using PSD
Phase 4: use encoder + absolute value as 2nd feature extractor
Phase 1: train first layer using PSD
Phase 2: use encoder + absolute value as feature extractor
Phase 3: train the second layer using PSD
Phase 4: use encoder + absolute value as 2nd feature extractor
Phase 5: train a supervised classifier on top
Phase 6 (optional): train the entire system with supervised back-propagation
Pedestrian Detection: INRIA Dataset. Miss rate vs false positives

[Kavukcuoglu et al. NIPS 2010] [Sermanet et al. ArXiv 2012]
Unsupervised Learning: Invariant Features
Unsupervised PSD ignores the spatial pooling step. Could we devise a similar method that learns the pooling layer as well?

Idea [Hyvarinen & Hoyer 2001]: group sparsity on pools of features

- Minimum number of pools must be non-zero
- Number of features that are on within a pool doesn't matter
- Pools tend to regroup similar features

\[E(Y,Z) = \|Y - W_d Z\|^2 + \|Z - g_e(W_e, Y)\|^2 + \sum_j \sqrt{\sum_{k \in P_j} Z_k^2} \]
Learning Invariant Features with L2 Group Sparsity

- Idea: features are pooled in group.
 - Sparsity: sum over groups of L2 norm of activity in group.

 - [Hyvärinen Hoyer 2001]: “subspace ICA”
 - decoder only, square

 - [Welling, Hinton, Osindero NIPS 2002]: pooled product of experts
 - encoder only, overcomplete, log student-T penalty on L2 pooling

 - [Kavukcuoglu, Ranzato, Fergus LeCun, CVPR 2010]: Invariant PSD
 - encoder-decoder (like PSD), overcomplete, L2 pooling

 - [Le et al. NIPS 2011]: Reconstruction ICA
 - Same as [Kavukcuoglu 2010] with linear encoder and tied decoder

 - Locally-connect non shared (tiled) encoder-decoder

\[
\lambda \sum \sqrt{\left(\sum Z_k^2 \right)}
\]
Groups are local in a 2D Topographic Map

- The filters arrange themselves spontaneously so that similar filters enter the same pool.
- The pooling units can be seen as complex cells.
- Outputs of pooling units are invariant to local transformations of the input.
 - For some it's translations, for others rotations, or other transformations.
Image-level training, local filters but no weight sharing

- Training on 115x115 images. Kernels are 15x15 (not shared across space!)
 - [Gregor & LeCun 2010]
 - Local receptive fields
 - No shared weights
 - 4x overcomplete
 - L2 pooling
 - Group sparsity over pools
Image-level training, local filters but no weight sharing

Training on 115x115 images. Kernels are 15x15 (not shared across space!)
Topographic Maps

119x119 Image Input
100x100 Code
20x20 Receptive field size
sigma=5

Michael C. Crair, et. al. The Journal of Neurophysiology Vol. 77 No. 6 June 1997, pp. 3381-3385 (Cat)

K Obermayer and GG Blasdel, Journal of Neuroscience, Vol 13, 4114-4129 (Monkey)
Image-level training, local filters but no weight sharing

Color indicates orientation (by fitting Gabors)
Replace the L1 sparsity term by a lateral inhibition matrix.

Easy way to impose some structure on the sparsity.

\[
\min_{W, Z} \sum_{x \in X} \|Wz - x\|^2 + |z^T S z|
\]

[Gregor, Szlam, LeCun NIPS 2011]
- Each edge in the tree indicates a zero in the S matrix (no mutual inhibition)
- S_{ij} is larger if two neurons are far away in the tree
Non-zero values in S form a ring in a 2D topology

Input patches are high-pass filtered
Invariant Features through Temporal Constancy

- Object is cross-product of object type and instantiation parameters
- Mapping units [Hinton 1981], capsules [Hinton 2011]
What-Where Auto-Encoder Architecture

Decoder

Predicted input

Inferred code

Encoder

Predicted code

Input
Low-Level Filters Connected to Each Complex Cell

C1
(where)

C2
(what)
Generating images

Input
Future Challenges
Future Challenges

- Integrated feed-forward and feedback
 - Deep Boltzmann machine do this, but there are issues of scalability.

- Integrating supervised and unsupervised learning in a single algorithm

- Integrating deep learning and structured prediction ("reasoning")
 - This has been around since the 1990's but needs to be revived

- Learning representations for complex reasoning
 - "recursive" networks [Pollack 90's] [Bottou 10] [Socher 11]

- Integrating Deep Learning with "memory"
 - LSTM [Hochreiter 97], MemNN [Weston 14], NTM [Graves 14]

- Representation learning in natural language processing
 - [Y. Bengio 01],[Collobert Weston 10], [Mnih Hinton 11] [Socher 12]

- Better theoretical understanding of deep learning and convolutional nets
 - e.g. Stephane Mallat's "scattering transform", work on the sparse representations from the applied math community....
Towards Practical AI: Challenges

- Applying deep learning to NLP (requires “structured prediction”)
- Video analysis/understanding (requires unsupervised learning)
- High-performance/low power embedded systems for ConvNets (FPGA/ASIC?)
- Very-large-scale deep learning (distributed optimization)
- Integrating reasoning with DL (“energy-based models”, recursive neural nets)

Then we can have
- Automatically-created high-performance data analytics systems
- Vector-space embedding of everything (language, users,...)
- Multimedia content understanding, search and indexing
- Multilingual speech dialog systems
- Driver-less cars
- Autonomous maintenance robots / personal care robots
Marrying feed-forward convolutional nets with generative “deconvolutional nets”

- Deconvolutional networks
 - [Zeiler-Graham-Fergus ICCV 2011]

Feed-forward/Feedback networks allow reconstruction, multimodal prediction, restoration, etc...

- Deep Boltzmann machines can do this, but there are scalability issues with training

Finding a single rule for supervised and unsupervised learning

- Deep Boltzmann machines can also do this, but there are scalability issues with training