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ABSTRACT

We study how to develop an interpretable query simulation frame-
work that can potentially explain the process a real user might
have used to formulate a query and propose a novel interpretable
optimization framework (PRE) for simulating query formulation
and reformulation uniformly based on a user’s knowledge state,
where the three high-level objectives are to maximize the precision
and recall of the anticipated retrieval results and minimize the user
effort. We propose probabilistic models to model how a user might
estimate precision and recall for a candidate query and derive multi-
ple specific query formulation algorithms. Evaluation results show
that the major assumptions made in the PRE framework appear
to be reasonable, matching the observed empirical result patterns.
PRE provides specific hypotheses about a user’s query formulation
process that can be further examined via user studies, enables sim-
ulation of meaningful variations of users without requiring extra
training data, and serves as a roadmap for systematic exploration
and derivation of new interpretable query simulation methods.
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1 INTRODUCTION

Modeling and simulating search engine users is essential for quanti-
tative evaluation of Interactive Information Retrieval (IIR) systems.
Indeed, it has been argued that simulation of users may be the only
way to do any reproducible experiments with an IIR system [4, 51]
since evaluation using real users (e.g., the A/B test) is inherently not
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reproducible or extensible to include any future IIR system in the ex-
periments. Further, simulation will ensure control over experiments
such that it can be used to evaluate the effects of different scenarios
like different user types, user tasks, and “what-if” scenarios that are
not frequent in real user datasets or online evaluations [4]. A formal
model of a user is also essential for optimizing any IIR algorithms
since the objective function to be optimized by such an algorithm
must include a mathematical description of the user that it attempts
to interact with. Moreover, an interpretable parameterized user
simulation model where the parameters meaningfully correspond
to different user behaviors can also be used as a tool to mine real
user logs to identify interesting user search behavior patterns [34],
in addition to simulating different user search behaviors.

However, formally modeling and simulating user interactions is
very challenging for the following reasons.

First, the interaction process of a user with an IR system is an
unobservable complex cognitive process where the user’s knowl-
edge and information need can also be frequently updated [9, 26].
Existing research in cognitive science and search user studies only
provides a limited understanding of this process. We thus do not
have a clear theoretical basis for modeling users mathematically.
Second, user interaction has a lot of variance; users with the same
information need may show different types of querying and click-
ing behaviors. Thus a simulator should also be able to vary in a
meaningful way to simulate different kinds of user behaviors, such
as variations in their knowledge background, patience, or trade-
off between effectiveness and effort. Further, the simulator should
also adapt to different information needs. Finally, evaluation of the
user simulation model also poses multiple challenges [32]. While
there has been some progress in evaluating user simulators empiri-
cally (e.g., the Tester-based evaluation approach [32, 33] and the
multi-dimensional evaluation framework [12, 15]), there is a lack
of progress in evaluating the soundness of the model behind a user
simulator, which is primarily because the existing user simulators
do not clearly articulate the assumed generative process that an
actual user uses in generating the observed search behavior.

Due to these challenges, progress in the research of user simula-
tion has been slow, especially in developing formal models that can
provide an interpretable explanation of how users formulate queries.
While many models and methods have been proposed for modeling
clickthroughs (see e.g., [11, 17, 21, 23]), only a few methods have
been proposed for query simulation [3, 5, 6, 13, 15, 30, 35].

There are two common deficiencies in all the existing approaches
to simulating user query formulation. First, the existing approaches
do not explain how or whether the simulation algorithm is based
on an assumed generative process that an actual user may follow
for formulating a query, making it hard to extract any meaningful
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hypothesis about the whole process of a user’s query formulation
from such algorithms. Moreover, all the existing methods with few
exceptions [14, 34, 35] do not incorporate a user knowledge state
as an underlying variable for the query formulation process, even
though a query formulated by a real user is clearly influenced by
their knowledge. Second, although most algorithms adopted an im-
plicit optimization framework to generate a query that is “optimal”
by some criteria, the objectives to be optimized are often not explic-
itly articulated, nor can they be easily interpreted as meaningful
objectives that a user could conceivably optimize when formulating
a query, again making it hard to interpret those algorithms from
the perspective of simulating real users.

One may argue that as long as the synthetic queries generated by
a query simulator are similar to a real user’s queries or give similar
performance, the interpretability and how realistic the simulator is
in terms of simulating the actual query generation phenomenon are
not very critical, thus developing a highly interpretable simulator
may be only theoretically interesting. However, we would argue
that an interpretable simulator is not only theoretically interesting
but also is of practical importance. When a simulator only has a
high empirical validity but is not theoretically sound, it would have
limited value in applications because its generalization capacity
of generating realistic queries unseen in the training data set is
questionable; yet, being able to generate unseen realistic queries is
precisely why we need a simulator in the first place. Further, the
best way to evaluate simulated queries is already an open challenge
raising the question of the reliability of pure empirical validation.

In this paper, we address the above limitations of the existing
work by proposing a novel interpretable Precision-Recall-Effort
(PRE) optimization framework for simulating query formulation
and reformulation. In the PRE framework, we make the following
explicit assumptions (hypotheses) about how a user formulates a
query: 1) A user is assumed to generate a query to maximize both
the recall and precision of the anticipated retrieval results while
minimizing the effort of making the query. 2) A user would attempt
to estimate the recall and precision of the anticipated retrieval
results based on the (current) knowledge state of the user. The
knowledge of a user includes, as a minimum, knowledge about how
the search engine would process a query (e.g., retrieving documents
matching keywords in the query), and knowledge about the relevant
and non-relevant (distracting) information (e.g., terms that may
occur in relevant or non-relevant information items). 3) A user’s
knowledge state would be updated throughout a search session as
the user learns during the search session; thus, reformulation of
queries can be assumed to follow the same initial query formulation
process but with an updated knowledge state.

The precision and recall are estimated using a Model of Precision
(Prec) and a Model of Recall (Rec); both can be defined based on
probabilistic models conditioned on the knowledge state of the user.

As an interpretable optimization framework for query formula-
tion with explicit objectives, the proposed PRE framework has the
following benefits that cannot be offered by existing approaches to
query formulation simulation:

1. Explicit assumptions and hypotheses: PRE can be evaluated
analytically to assess its soundness since all the assumptions made
about a user would be not only explicit but also formally described.
Experimental studies with real users can potentially help validate or
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further improve those assumptions, advancing our understanding
of how users formulate a query.

2. Simulation of variable behaviors of users: The interpretabil-
ity of the framework means that the parameters introduced in PRE
can be interpreted as representing meaningful user variations, thus
naturally tackling the challenge of modeling variable behaviors of
users without requiring training data from all the users. For exam-
ple, the influence of the three objectives (Precision, Recall, Effort)
in the optimization objective function can be controlled flexibly
by parameters; varying these parameters enables to simulate plau-
sible different querying strategies that users may adopt without
requiring additional user data for training.

3. Roadmap for systematic exploration of query formulation
simulators: PRE can serve as a roadmap for systematic exploration
of specific query simulation methods. Different ways to instantiate
the framework would lead to many new query simulation methods.
It further enables examination and comparison of the proposed
query simulation methods in existing literature analytically as PRE
covers existing approaches as specific instantiations.

4. Extensibility with other user modeling components: PRE
can be extended by plugging in any existing models for modeling a
user’s knowledge state [14] into the PRE framework, incorporating
other interpretable models related to a user’s query formulation
(e.g., economics models [2]), and combining it with other models
of search user actions like click models.

As mentioned above, the PRE framework can be instantiated
in many ways resulting in different query simulation methods for
simulating queries. While a full exploration of this potential of
PRE is out of the scope of this paper, we explore and study some
basic strategies to instantiate the individual components of the
PRE framework to derive multiple query simulation algorithms.
These simulation algorithms are used to study the soundness of
the design of PRE, that is, the high-level objectives to optimize
and the uniform modeling of both initial and subsequent query
formulations. Our experiment results show that optimizing both
precision and recall when generating a query is indeed necessary in
that optimizing only one of them has consistently resulted in lower
performance compared to optimizing both together. This suggests
that the objective function of PRE is reasonable, and conceptually
the query formulation problem can be reduced to choosing a query
to maximize both precision and recall. The results also show that
the performance patterns of different query formulation methods
in initial query formulation are similar to their patterns observed
for query reformulation, suggesting that the uniform query formu-
lation mechanism adopted in PRE is reasonable and it is possible to
improve query formulation in a general way to impact both initial
and subsequent query formulations. However, we observed that
improving precision and improving recall does not have an additive
effect on overall performance improvement, suggesting that there
is a potential interaction between precision and recall models that
needs to be further studied.

The main contribution of this paper is the introduction and
study of a novel interpretable optimization framework PRE, which
is based on hypotheses explaining how real users formulate their
queries, formally connects the query formulation process with the
knowledge state of a user, simulates both initial query formulation
and subsequent reformulation in a uniform manner, and serve as a
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roadmap for systematic exploration of many new specific query sim-
ulation models and algorithms. Query simulation algorithms can be
used as part of a user simulation model for evaluating or optimizing
IIR system, for generating synthetic data collections [15, 36, 40] and
also individually for evaluating query suggestion algorithms [47].

2 RELATED WORK

User simulation has been studied in the past from different perspec-
tives. For example, early studies focused on using user simulation
for IR evaluation [18, 45]. It also has been used for analysing user
search behavior patterns [34], training reinforcement learning al-
gorithms [43], and recently for evaluating conversational search
systems [42, 50]. While many click modeling approaches are pro-
posed [11, 17, 21, 23], less work has been done on query model-
ing [3, 5, 6, 13, 15, 30, 35]. Some of the previous works attempted
to simulate all user actions (e.g., [15, 34]).

Multiple query simulation methods have been proposed in the
previous works, but no previous work has attempted to propose a
query simulation method based on an explicit hypothesis about the
process that a user may have used to formulate a query (especially
the initial query), which is achieved in our proposed PRE frame-
work. For example, query modification strategies have been studied
and utilized in many methods (see, e.g., [5, 7, 13, 29, 30, 35, 47]).
While those query modification strategies are realistic user strate-
gies, the previous work has not attempted to explain why a user
has chosen a particular strategy which may also be different at dif-
ferent times. The PRE framework offers a potential explanation of
such behavior from the perspective of a user’s attempt to optimize
precision and/or recall while minimizing effort (editing a previ-
ous query involves less effort than generating a new query from
scratch). Most existing query simulation algorithms are based on a
language model of information needs (e.g., [3, 12, 15, 29, 35]). Most
early simulators [3] are not parameterized and thus cannot simulate
variable user behavior or preferences. A recent work [12] overcame
this limitation by adapting the query change model [22, 49] for
query simulation and enabling some limited user variation by in-
troducing parameters to denote user preferences like preference
to retain previous query terms or preference to stick to the topic.
Almost all of these methods can be covered as special instantiations
of the PRE framework. Large scale user search logs are also used
for learning query simulation methods to rewrite [24] or reformu-
late queries [25, 28], but these methods rely on the availability of
such data. In the PRE framework, the model of recall and precision
can either be computed using TREC collections as pursued in our
experiments or be trained using user search log data if available.

Multiple studies have investigated how learning occurs during
the search process [10, 19, 37] and how different user characteristics
may have an impact on learning [39, 48] including knowledge of
the users. However, all the query simulation methods, with only a
few exceptions ( [14, 15, 35]) have failed to capture the impact of a
user’s knowledge state on query formulations. The PRE framework
established a general probabilistic model to connect query formu-
lation with knowledge state, enabling uniform modeling of initial
query formulation and all subsequent query reformulations. The
specific user knowledge state and update model we have explored
in this study is similar to the strategy proposed by Maxwell et al.
[35].
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A significant limitation of all the existing work on query sim-
ulation is that the simulation methods are not grounded on any
explicit hypothesis regarding how the real users actually formulate
queries. Also, although the query scoring is optimized in most of
the existing approaches, it is not explicitly explained what objec-
tives are optimized, making it extremely hard to assess whether
the objectives optimized by the existing algorithms actually reflect
what a real user might aim to optimize while formulating a query.
There are descriptive models of search behavior and search pro-
cess [8, 9, 20, 27, 31, 41] but they are not mathematical models that
can be applied for simulating user behavior or generating queries.
For example, the microeconomic theory has been used to study the
effort and effectiveness of querying and browsing [1, 2]. Our frame-
work is also grounded on similar principles where we optimize the
effectiveness and effort of queries for query formulation, and the
microeconomic models can be potentially incorporated into our
framework as additional constraints for optimization.

3 THE PRECISION-RECALL-EFFORT QUERY
SIMULATION FRAMEWORK

3.1 Maximization of recall and precision

To develop an interpretable framework for query simulation, we
must consider how a user might formulate a query. Logically, a
user would want to generate a query that can retrieve relevant
documents without retrieving any non-relevant ones, i.e., optimize
the quality of the anticipated retrieval results. As Recall and Pre-
cision are two basic meaningful measures of quality of retrieval
results from a user’s perspective, it is reasonable to assume that
a user would choose a query to maximize the expected recall and
precision. However, how does a user estimate the expected recall
and precision of a query?

To address this question, let’s consider an example of a real query
“collecting old US coins” from the TREC Session Track dataset [16],
where the information need (IN) is to “Obtain information on how
to start collecting old US coins” It is instructive to analyze how a
user might have come up with such a query.

First, it is natural for the user to think about “US coins” as it
is the general topic of the IN. We note that “US coins” might be
the most popular term in the relevant documents, and a user’s
tendency to use such a popular term reflects the desire to match as
many relevant documents as possible (i.e., maximize recall). Thus
to maximize recall, a query is chosen such that it would “match” as
many relevant documents as possible, where “match” indicates that
the document is likely retrieved for the query by a search engine,
and we will use the word “match” in this notion throughout the
paper.

Formally, let Match € {0, 1} be a binary variable that denotes
whether there is a match (Match = 1) or not (Match = 0) between
a query g and a document d in the collection C. We use p(Match =
1|g, d) to denote the probability that there is a match between a
query q and document d. Let R C C be the subset of relevant
documents. To maximize the recall of the anticipated results, a user
can be reasonably assumed to come up with a query g that would
maximize p(Match = 1|q,d) for all relevant documents, which
can be formally denoted by the following Model of Recall (Rec)
component in the objective function
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Model of Recall : Rec(q, R) : l_[ p(Match =1|q,d). (1)

Note that the conjunctive expression‘iﬁee?e (instead of a disjunctive
expression) encodes the objective of finding a g that can match
every relevant document in R.

However, maximizing recall is unlikely the only objective in a
user’s mind since such a query also tends to match “too many” doc-
uments, including non-relevant ones. Taking the previous example
of the TREC real user query discussed earlier, the shorter query
“US coins” alone might match many documents about current US
coins that don’t have information about old US coins nor about how
to collect them. This explains why the user has further added the
phrase “collecting old” which helps make the query more specific,
resulting in the final query “collecting old US coins”, which can be
expected to have higher precision than the previous candidate “US
coins” due to its discrimination against non-relevant documents.
This example shows that in addition to maximizing recall by choos-
ing a query that can match all relevant documents, a user may
also attempt to maximize the precision of the retrieval results by
choosing a query that does not match any non-relevant document.

Formally, to avoid matching non-relevant documents means to
minimize the probability p(Match = 1|q, d) for every non-relevant
document d € C—R, which conceptually is equivalent to maximiza-
tion of precision since the precision reaches a maximum when we
do not retrieve any non-relevant documents. Thus, we assume that
when a user composes a query, the user would also attempt to max-
imize the precision captured by the following Model of Precision
(Prec) component in the objective function
Model of Precision : Prec(q, R) : (1 - p(Match = 1]q,d)),

deC-R
)
where C—R is the set of non-relevant documents and 1-p(Match =
1|g, d) is the probability that g does not match d. Once again, the
conjunctive, instead of disjunctive, relation here captures the goal
of not matching any of the non-relevant document.

The Rec and Prec can be combined naturally into one single
objective function to capture the objective of optimizing both recall
and precision. Indeed, the product Rec(g, R)Prec(g, R) is precisely
the probability that query q matches every relevant document but
does not match any non-relevant ones. Despite the theoretical
attractiveness of using this product directly as an objective function,
in reality, we often need to accommodate the inevitable tradeoff
between recall and precision. Indeed, maximizing precision often
means sacrificing recall and vice versa. For example, consider again
the information need in the previous example with an extension,
“Obtain information about old US coins, how to start collecting and
selling them?”. While the query “US coins” might have a higher
recall but lower precision, the query “collecting and selling old US
coins” may be the opposite and too specific to retrieve sufficiently
many relevant documents. In some cases, increasing precision may
miss to retrieve relevant results or lead to zero retrieved results if
the document does not match the query completely or only matches
part of the query. Thus recall and precision should be balanced to
obtain satisfactory search results. The optimal tradeoff between
them may depend on multiple factors, including user preference
or specific information needs. For example, recall might be more
important in the case of finding all literature articles to write a
comprehensive survey, while precision may be more important if a
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user would simply want to know the major events today by finding
a few relevant news articles. Thus a general query formulation
framework must have a precision-recall weighting parameter to
enable it to be sufficiently flexible to accommodate variable tradeoffs
between precision and recall. In the proposed PRE framework, we
will thus choose a query to maximize the following objective of a
weighted combination of Rec and Prec

g(q, R, ) = alogRec(q, R) + (1 — a) log Prec(g, R), (3)
where a € (0, 1) is an interpretable weighting parameter to indicate
the importance of recall relative to precision, which we can vary to
simulate different user behaviors or user needs.

3.2 Modeling effort

While optimizing the query quality, the user also naturally wants to
minimize the effort, which constitutes time and cognitive load of the
user to make a query. In general, the effort required for formulating
a query ¢, which is denoted by E(q), can be modelled by utilizing
two types of work involved in querying.

1. Cognitive Effort: The first is the cognitive effort required to
think about the query words; a query with more rare or difficult
terms/words may be assumed to require more cognitive load and
time from the user and thus have a higher effort.

2. Physical Effort: The second is the effort needed to physically
communicate the query to the search engine, e.g., the effort re-
quired for typing in the query; shorter queries generally take less
time/effort, and longer queries take more time/effort. The effort
spent to type in the query can be based on the length of the query,
which can be measured in terms of both the words and the letters
in the query.

The effort function E(gq) can be used either as an objective to
be minimized or as a constraint like a max limit on query length
(Ig] < 1), which is again equivalent to an objective function which is
0if |g| < I and w0 if |g| >= 1. An effective query often requires more
effort (e.g., the query “collecting old US coins” is longer and takes
more effort than “US coins”, but it is more effective) thus, there is
a tradeoff between maximizing the query quality (as reflected by
the models of recall and precision) and minimizing effort. A user
might spend more time/effort to make an optimal query or settle
on a sub-optimal query which is easier and takes less effort. Thus a
general framework for query formulation should also accommodate
the above tradeoff, which we achieve by introducing a weight on
the effort to control the tradeoff.

Thus, in general, the query formulation process is a multi-objective
optimization process involving three (potentially conflicting) ob-
jectives: (1) Model of Recall: Rec(g, R); (2) Model of Precision:
Prec(q, R); and (3) User Effort: E(q), leading to the following gen-
eral Precision-Recall-Effort (PRE) optimization framework for query
formulation and reformulation

q" = argmaxg(q, R, a) — AE(q)
q
= argmax « log Rec(q, R) + (1 — a) log Prec(gq, R) — AE(q),
q
4
where A > 0 is an interpretable parameter controlling the tragie)-
off between query quality and user effort.

The PRE framework provides a general theoretical framework for
simulating how a user formulates a query based on the assumption
that the user has the following knowledge: (1) Knowledge about the
collection of information items C; (2) Knowledge about relevant
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item set R C C; (3) Knowledge about how to estimate p(Match =
1|q, d), i.e., how a search engine works. In reality, the users may
not have accurate knowledge about any of these (if they did, they
would be able to formulate a perfect query), especially in the initial
stage of the search. As the user interacts with a search engine more,
the user may gain more knowledge in all the three areas above.
The PRE framework enables us to model the cognition process of a
user during the search process by accommodating updating of any
of the knowledge over time. In this way, the framework models
the initial query formulation and subsequent reformulations in a
uniform way with the difference only in the assumed knowledge of
the user at the time of formulating a query. Next, we discuss how
to model a user’s knowledge state in detail.

3.3 Knowledge state

When we apply the PRE framework to simulate a user, the whole
optimization problem must be framed in the context of a user and
a user’s knowledge, which we denote by K. While Rec(g, R) and
Prec(g, R) capture user’s objective to optimize, they are computa-
tionally complex. It is unlikely that a user would be able to keep
track of all the relevant and non-relevant documents cognitively
and follow the exact formulas to do the computation. Since how
exactly a user stores knowledge about relevance is unknown, as
an initial exploration of PRE, we start with the simplest model of a
user’s knowledge state, where we assume that the user would ac-
cumulate and summarize the knowledge about relevant documents
in R with an aggregated prototype relevant document Ry and that
about non-relevant documents in C — R with an aggregated pro-
totype non-relevant document R this way, the user would only
need to keep track of these two prototype documents for represent-
ing relevant and non-relevant information, respectively, and the
knowledge state K is mainly composed of two prototype documents
R and Ry, ie., K = {Rg, Rk }.

Under such a prototype document assumption, we have R =
{Rk} and C — R = {Rk}, both containing just one (prototype)
document, thus the product is no longer needed in the definitions of
Rec and Prec, leading to the following knowledge state-dependent
models of recall and precision

Rec(q, Rk) : p(Match = 1|q, Rg),

Prec(q, Rk) : 1 — p(Match = 1|q, Rk),
Adding the effort model E(g), we obtain the PRE framework,
q" =arg m(?x alogRec(q, Ri) + (1 — &) log Prec(q, Rx) — AE(q).

(6)
It is reasonable to assume that initially, a user’s knowledge about
Rx is mainly based on a brief description of the information need
since the user has not yet seen any relevant document, and a user’s
knowledge about Rk can be assumed to be based on a general sense
about the content in a collection C. As a user interacts more with
a search engine, the user would be able to see more examples of
relevant and non-relevant documents and thus update the user’s
knowledge by adding more information about relevant documents
to Rk and more information about non-relevant documents to
Rk The exact form of updating depends on how exactly the user
stores the knowledge about Ry and R We will further discuss this
issue in Section 4 under the assumption that the user would store
the knowledge in the form of a unigram language model, i.e., the

®)
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probability that a word w is seen in a relevant prototype document
(p(w|Rk)) or in a non-relevant prototype document ( p(w|Rg)).
The updating of a user’s knowledge increases the user’s capacity
to potentially formulate a better query, and the PRE framework
naturally captures this by simply using a more enriched knowledge
state of the user for formulating a query.

The explicit connection of the query formulation (Rec and Prec)
with a user’s knowledge state (K) in PRE not only enables the mod-
eling of initial query formulation and subsequent reformulations
in a uniform way (as it should be), but also allows for meaningful
variations of the simulated users by simulating different knowledge
backgrounds of users; for example, the novice users vs. expert users
can be simulated by varying how R is initialized. It also enables a
natural integration of modeling query formulation with modeling
the cognition of users during the search process.

So far, we have explained all the major elements in PRE, but
we have not yet explained how a user might estimate p(Match =
1|q, d), which is the basis for computing the models of both recall
and precision in the objective function. This has to do with a user’s
knowledge about how a search engine works and can be potentially
instantiated in many ways, which we will elaborate in the next
section. The existing query formulation methods can generally be
interpreted as special instantiations of the PRE framework.

4 INSTANTIATION OF THE FRAMEWORK

An important benefit of PRE is that by instantiating each compo-
nent in PRE in different ways, we can systematically explore and
study many new query simulation algorithms in the same unified
framework. As an initial step, we propose some basic instantiations
of PRE using statistical language models (LMs), leaving a thorough
exploration as future work.

4.1 Conjunctive vs. Disjunctive matching

The major component that we need to instantiate is the matching
likelihood p(Match = 1|q, d), which models a user’s assessment of
whether a document d matches a query q. Without any additional
knowledge about the user, we propose and study two complemen-
tary basic interpretations of matching:

Conjunctive matching: In this interpretation, we assume that
a user’s notion of “matching” is that document d matches all the
words in query g, ie, p(Match = 1|q,d) = [l.eq p(wl|d). With
this interpretation, the model of recall can be refined as follows,

Ree(q,R) = | | p(wIRk). ()
weq

We note that such a conjunctive interpretation has an inherent bias
toward favoring short queries since adding a word to a query would
cause the product to be smaller. Intuitively, this bias makes sense
since it would be easier to match all the words in a shorter query
than in a longer query. However, we want to consider variable
lengths of the query when finding an optimal query; thus, we need
to normalize the product using the query length. We thus add an
exponent 1/|q| to the product, where |g| is the total number of
words in the query (query length), giving an interpretation of the
“per-word” query probability in the conjunctive recall model (Cr).

Cr : Rec(q, Rk) = (1—[ p(W|7€K))1/|q‘, ®)

weq
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We can similarly refine the model of precision to obtain the follow-
ing conjunctive precision model (Cp)

Cp : Prec(q,Rx) = 1— (| | p(wiRk)14l. )
we
Disjunctive matching: Alternatively, ‘\Zive can also interpret match-
ing as the document matching any one of the query words, i.e.,
p(Match = 1|q,d) = ﬁ Yweq P(w|d). Applying this interpreta-
tion, we can obtain the following disjunctive recall model (Dr) and
disjunctive precision model (Dp)

Dr : Rec(q, Rg) = L Z p(w|Rk), (10)
lql &=
Dp : Prec(q,Rg) =1 - % Z P(W|RK) (11)

we

Note that the disjunctive interpretation ig naturally normalized
without any length bias and the conjunctive and disjunctive inter-
pretations can be combined, leading to four different instantiations
of the PRE framework. Moreover, we can use a higher-order n-gram
language model (e.g., a bigram language model) to replace the un-
igram language model in either of the two interpretations above
to potentially achieve more accurate modeling and generate more
variations. Thus PRE can serve as a roadmap for us to explore better
models for query formulation by systematically improving each
component model.

4.2 Instantiation of Effort

We instantiate the effort function as a constraint such that only
queries of length less than a threshold L would be allowed, i.e.,
E(q): |q| <= L. As E(q) is a constraint, it is equivalent to taking
E(g) as an indicator function and setting A parameter (weight of
E(g) in Eq. 4) to a sufficiently large constant such that the length
boundary L would in effect act as the weight parameter influencing
the importance of effort.

4.3 Solving optimization problem

Even with a restricted length, the complexity in solving the op-
timization problem is still exponential as the query can contain
any words in any order. To address this problem, following pre-
vious work [2, 3, 15], we use a modified greedy algorithm to first
generate candidate queries and then find the optimal query. Using
the vocabulary of words in the prototype document R, we first
enumerate all the one-word and two-word queries as an initial set
of candidate queries. The two-word candidate queries are then ex-
panded greedily by adding a word that maximizes the whole query
score, creating increasingly longer queries until L-word candidate
queries are created. All the candidate queries (with variable lengths)
are finally ranked according to their optimization function score
resulting in a ranked list of candidate queries. The top query is
taken as the simulated query. During reformulation, the previously
simulated queries are ignored from the candidate query list so as
not to duplicate previous queries.

4.4 Knowledge state update

As described in Section 3.3, a user’s knowledge K is {Rg, Rk }. We
assume that the initial knowledge of the user regarding relevant
and non-relevant information is based on information need de-
scription (s) and collection (C), respectively. That is, Rg = s (s is
the only relevant document) and Rx = C (all documents in the
collection are non-relevant and can be concatenated into one single
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prototype non-relevant document). This assumption is appropri-
ate for building (dynamic) user simulators based on static TREC
collections [15].

During a search session, the user can scan through the search
results to learn new information. In this process, the user would be
exposed to examples of both relevant and non-relevant documents,
which can then be used to update Rg and Ry, respectively, to
enrich the representation of relevant and non-relevant information.

With the unigram language model instantiations the simulated
user would only need to store the knowledge about relevance in
the form of two unigram LMs, i.e., the relevance LM p(w|Rg) and
the non-relevance LM p(w|Rk ), which model the probability that
word w occurs in a prototype relevant document and non-relevant
document, respectively. With such a knowledge storage model,
updating of knowledge boils down to updating these two LMs by
aggregating word counts from the newly acquired examples of both
relevant and non-relevant documents as follows

c(w,s) + X c(w,sr)p(R = 1|sr,s)
T 0w, ) + Zay (W, s)P(R = 1]57,5)’

c(w,C) + X c(w,sr)p(R=0|sr,s) (13)
S c(W,C) + X c(W,sr)p(R = 0|sr,s)’
where c(w, s) gives count of the word w in s, ¢(w, C) is the count
of the w in the collection C, sr is a snippet of a retrieval result, and
p(R = 1|sr,s) and p(R = 0|sr, s) are the probability that snippet sr
is relevant or non-relevant, respectively, estimated based on known
relevance judgments of the corresponding documents. Once the
relevance and non-relevance LMs are updated, they can be used
to reformulate a query using the PRE framework. As in the case
of refining the models of recall and precision, more sophisticated
language models and knowledge updating mechanisms can be easily
plugged into the PRE framework.

5 EXPERIMENT DESIGN

The purpose of our experiments is to study the soundness and ben-
efit of the proposed framework and answer the following research
questions: RQ1: Do the empirical results support the design of
the objective function of PRE, i.e., maximization of both precision
and recall? RQ2: Do the improvement of the precision and recall
instantiations have an additive effect on the overall performance
improvement, or is there a complex interaction between precision
and recall models? RQ3: Does the relative performance of different
query simulation methods follow a similar trend for both initial
and reformulated queries? In the rest of this section, we describe
how we design our experiments to answer these questions.

Dataset: We use TREC Session Track 2012, 2013 and 2014 data
sets [16] because they are among the very few data sets with the
initial and reformulated queries formulated by real users, which
we need for evaluation. Each topic is an information need with a
title and description. Each topic’s description is used as an infor-
mation need description s to perform query simulation. We used
unigram word frequencies derived from Google Web Trillion Word
Corpus [38] available for the top 333,333 words as the collection
language model p(w|C). We used indri and pyndri [46] for index-
ing the ClueWeb datasets. For evaluating the simulated queries, we
compared them with the real user queries of the same information
need obtained from the sessions in the Session track (St for short)

p(wlRk) = (12)

p(w|Rk) =
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datasets. St 2012 and 2013 only have 200 and 400 user queries re-
spectively, compared with 3600 user queries in St 2014. Thus we
can expect that the evaluation with St 2014 is more consistent and
robust. Further, St 2012 has completely different topics compared
to St 2013, 2014 whereas St 2013 and St 2014 share some topics.

Query similarity measurement: To assess the quality of a simu-
lated query, for every simulated query, we computed its maximum
Jaccard similarity with any of the real user queries of the same in-
formation need. We use Jaccard similarity because the TREC topic
descriptions used by the real users and our simulation model are
the same, so it is likely that the users have used most of the words
from this topic description. The average of these similarities for all
simulated queries of all TREC topics in the dataset is computed as
average Jaccard similarity (Avg_jsim). Avg_jsim can be computed
with top-k simulated queries from the ranked list generated by PRE.
The reason to compute maximum similarity is that the simulated
query can be similar to any one of the real user queries and need

not be close to all.
1 ZQEsmt,  MaXgeact, (jsim(Q, q))
Avg_jsim@k = — : (14)
! T & fsm

where jsim is Jaccard similarity, act; is the set of real user queries,
smt, i is the set of top-k queries generated for that topic and T is
the set of all topics (information needs).

In addition to Jaccard similarly, we also compute F-measure score
of the simulated queries. For each simulated query, we compute how
many words of the real query are covered (recall) and how many
words in simulated query are actually in the real query (precision).
We use average recall and average precision to compute the final F-
measure score. Similar to Jaccard similarity, we compute maximum
recall and maximum precision score for a simulated query when
compared to a real user query.

1 ZQesmt,k maXgeact, (prec(Q.q))
Avg _prec@k = — :
9.p P

= [smty |
1 ZQESWU:k maXgeact, (recall(Q, q))
Avg_recall@k = — :
g i 2 s |

teT

(15)

where prec(Q, q) = |Q‘8?|, recall(Q, q) = "Q|;|q"

Parameter estimation and setting: We estimate parameter « in
Eq. 4 using four fold cross-validation; it can vary from 0 to 1 and we
used grid search with 0.1 step. We set the effort parameter, which is
the threshold of the effort function or the maximum query length
L to 6. We have also studied the effect of varying the parameters o
and L on the performance results.

To establish statistical significance between the performance of
two different methods, we perform an independent two-sample t-
test with a p-value of 0.05; the p-value is chosen as 0.05 as there are
very few instances, just the number of TREC topics, of Avg_jsim.

6 EXPERIMENT RESULTS

We first compare different instantiations of Rec and Prec and the
four combinations of Rec and Prec instantiations, which we refer to
as combination methods, in Table 1 and Table 2. Table 1 and Table
2 show the average Jaccard similarity and F-measure scores of all
the instantiations. We can infer from Table 1, that combination
methods are always better than individual Rec or Prec methods
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Table 1: Avg_jsim@5 for Rec, Prec combination methods
using L=6 for Session Track 2012-2014 data.

Jaccard similarity | Session track datasets

Methods St 2012 St 2013 St 2014
CrCp 0.2536 (0.05) 0.3612 (0.475) | 0.4431 (0.125)
CrDp 0.267 (0.1) 0.3539 (0.1) | 0.436 (0.1)
DrCp 0.253 (0.125)° | 0.3651 (0.85) | 0.4504 (0.7)"'
DrDp 0.273 (0.1) 0.3533 (0.1) 0.4436 (0.1)
Cr 0.2529 0.3435 0.4124

Dr 0.2407 0.3312 0.4045

Dp 0.2038 0.1453 0.313

Cp 0.2538 0.2108 0.3573

QS3+ (baseline) 0.2696 0.2368 0.4049

Table 2: F — measure@5 for Rec, Prec combination methods
using L=6 for Session Track 2012-2014 data.

F-measure | Session track datasets

Methods St 2012 St 2013 St 2014
CrCp 0.3893 (0.05) 0.5324 (0.275) 0.6373 (0.15)
CrDp 0.3991 (0.1) | 0.5169 (0.1) 0.6081 (0.1)
DrCp 0.3876 (0.125) | 0.5344 (0.875)* | 0.6474 (0.625)""
DrDp 0.4071 (0.1) | 0.5167 (0.1) 0.616 (0.1)
Cr 0.3855 0.4958 0.5895

Dr 0.3663 0.4822 0.5854

Dp 0.3161 0.2436 0.4702

Cp 0.3836 0.3459 0.5569
QS3+ 0.3886 0.3726 0.5664

(which are special cases when we set « to either 1 or 0), i.e., CrCp,
CrDp, DrCp, DrDp always perform better than Cr, Dp, Cp, Dp in all
datasets. Similar trends can also be observed in Table 2. In Table 1
and 2, ! indicates statistically significant difference between DrCp
and Cr which are best methods among combination methods and
individual component methods respectively. This shows that both
Rec and Prec are important in the query formulation process; using
recall or precision alone always performs less than combining them
together. The result provides some empirical justification for the
design of the objective function of the PRE framework to optimize
both precision and recall, thereby answering RQ1.

Among individual components, Cr always performs better than
Dr and Cp is performing better than Dp. However, among the
combination methods, we observe that combining Dr with Prec
methods performs better than combining Cr with Prec methods.
DrCp performs better than CrCp and DrDp also performs better
CrDp. But in the case of precision, Cp mostly performs better than
Dp even after combining with a recall model. This implies that
combining the best individual methods in Rec and Prec may not
always result in the best method overall, indicating that there may
be a complex interaction between the Rec and Prec models, which
has to be further studied to optimize the component models of PRE
(addressing RQ2).

As a reference point, we also include the performance of a state-
of-the-art baseline model QS3+ [35] in Tablel and Table2. We see
that even the very basic instantiations we have studied in this
paper can already outperform this baseline method, * indicates
a statistically significant difference between DrCp and QS3+ in
Table 1 and 2, suggesting great potential for using PRE to further



ICTIR °22, July 11-12, 2022, Madrid, Spain

Figure 1: Avg_jsim@5 with varying o and L
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Table 3: Avg_jsim@5 of reformulated queries

Methods St 2012 St 2013 St 2014
CrCp 0.2520 0.3639 0.4333
CrDp 0.2606 0.3575 0.4264
DrCp 0.2523 0.3743 0.4383
DrDp 0.2670 0.3616 0.4360

develop more effective query simulation methods. Among all the
PRE instantiations, DrCp, the disjunctive instantiation of recall
(Dr) combined with conjunctive instantiation of precision (Cp)
appears to be most effective for query simulation except in St 2012
dataset. However, as these are only basic instantiations of PRE, we
expect to be able to achieve better performance in the future as we
further explore more sophisticated ways to instantiate PRE (e.g.,
higher-order n-gram LMs).

Table 1 and Table 2 also show the optimal parameter value of
« obtained through cross-validation in the parenthesis for each
method. For Cr, Cp, @ = 1.0 and for Dr, Dp a = 0.0 as they are
recall only and precision only methods respectively. For the re-
maining methods, we observe that the optimal « is mostly 0.1, with
the exception of DrCp, which has @ = 0.85 and @ = 0.7 as the
best parameter. Overall, the optimal parameter is never 0.0 or 1.0,
which again shows that considering both recall and precision gives
the best performance for the instantiations. To address RQ3, we
now perform query reformulation using search results of the initial
query with the knowledge state update method described in Section
4 to see if some conclusions we have made on initial query formu-
lation also hold for reformulated queries. In Table 3, Avg_jsim@5
is computed by comparing the reformulated queries with actual
queries. We observe similar trends in performance in Table 1 and
Table 3. The reformulation method further ensures that DrCp is the
best method in most cases, and similarly DrDp performs best on St
2012. One reason why St 2012 results are consistently different from
other datasets could be the small size of the dataset and the differ-
ent topic set compared to the remaining datasets. Similar trends
are also observed for the F-measure score. These results suggest
that the uniform modeling of initial formulation and subsequent
reformulation is reasonable and also facilitates optimization of a
query simulator by optimizing knowledge state updating and query
generation separately.

6.1 Analysis of parameters

We analyzed the sensitivity of all the combination methods with
respect to parameter @ as shown in Figure 1a. Figure 1a shows
Avg_jsim@5 for different o’s overall the folds in cross-validation.
The performance is low for « = 0.0 and 1.0, and mostly the same
for o between 0.1 to 0.9, and a similar trend is observed for both
Jaccard similarity and F-measure. Thus, it can be concluded that as
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long as both recall and precision are considered in the optimization
framework, the performance of different instantiations is not highly
affected by a. These results also indicate that the PRE instantiations
consistently outperform baseline model QS3+ irrespective of the
parameter « as long as both recall and precision are considered.

We have studied the distribution of best « for different users in
the St 2014 dataset as each session is associated with a user id. For
each user, we have estimated the best « that optimizes Avg_jsim@5
of the simulated queries by grouping sessions of that user. We could
obtain two interesting observations from these results. First, the
performance variation by varying « for each user is similar to
that of the average variation in Figure 1a, further supporting our
conclusion that considering both recall and precision is necessary.
That is, @ = 0.0 and 1.0 are non-optimal not only for the overall
average performance with all sessions but also for each individual
user’s sessions. Second, we examined the best « for those users
where the performance is most sensitive to @, and found that the
best a varies to a great extent between each user, which indicates
that real user behavior varies with different tradeoffs between recall
and precision; thus, not only should we maximize both recall and
precision, but we also must have the parameter « in PRE in order
to accurately simulate individual users’ variable tradeoff between
precision and recall.

As described in Section 5, we have set maximum length threshold
(L) to 6,E(q) : |q| < 6, for obtaining results in Table 1, 2, 3. To study
the sensitivity of this parameter, we have varied the threshold L
from 1 to 6 and the performance of different combination methods
are shown in Figure 1b, we observe that the performance of all the
methods increases in the beginning from L = 1 to 3 and then is
mostly the same for L = 3 to 6. Indeed, when the threshold is 6, we
observed that most of the optimal queries are of length 2 or 3 and
the average query length of the simulated queries is 1.97 for St 2014.
This shows that the PRE framework cuts down the query length
automatically for the optimal query even with higher threshold
parameter. At the same time, it can also simulate long queries (even
of length five) as shown by the example simulated queries in Table
4. Therefore, unlike many existing simulation approaches which
choose a constant query length, PRE adaptively simulates long or
short queries depending on the information need and setting L to 6
will allow for simulating a longer query whenever it is optimal.

6.2 Qualitative analysis

In Table 4, we provide a few examples of the simulated queries from
top-10 queries generated by the DrCp method and similar real user
queries for those topics. From the results, it can be observed that
the quality of the queries highly depends on the information need
description as it is the only information used. If the important
words representing the information need are frequent in the de-
scription, then simulated queries are close to the user queries and
vice versa; for example, as “swahili dish”, “hydropower” appear
many times in the topic description so the simulated queries are
close to user queries for the first and third topics in Table 4, whereas
the important keyword “world cup” appears only once in the last ex-
ample topic which is probably the reason for poor quality simulated
queries, thus this also leads to poor performance sometimes. The
results also show that the query length can either be long or short
depending on the information need; for example, in the second
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Table 4: Examples of simulated queries
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Topic description

Similar real user queries

Simulated queries

A friend from Kenya.......surprise him .... cooking a traditional Swahili dish..
learn about Swahili dishes and how to cook them. Find..about Swahili home cooking.

swabhili food traditional, swahili dish wiki,
swahili traditional dish, swahili dish,
swahili cook.

swabhili, swahili dish,
dish, traditional swahili dish.

You are planning a winter vacation to the Pocono Mountains region...
Where will you stay? What will you do while there?
How will you get there?

pocono mountain winter activity,
winter vacation in the pocono mountain,
pocono mountain region.

winter pocono mountain vacation plan,
pocono mountain region winter vacation plan,
pocono pennsylvania winter vacation plan.

Hydropower...renewable sources of energy..replace fossil fuels.
Find information about the efficiency of hydropower, the technology..
consequences building hydroelectric dams..on the environment.

hydropower efficiency, what be hydropower,
hydropower damn, hydoelectric power,
hydropower environment

hydropower, hydropower hydroelectric,
hydropower dam, hydropower efficiency.

France won..World Cup in 1998. Find information about the
reaction of French people and institutions (such as stock markets),
and studies about these reactions.

1998 world cup french reaction,
french world cup 1998,

french reaction win world cup,
stock market world cup 1998.

reaction, 1998 reaction,
cup reaction, reaction institution,
france reaction.

example of Table 4 the queries generated are very long, similar to
real user queries which are also long.

7 DISCUSSION AND FUTURE WORK

Ideally, user simulation should be done based on a computational
user model that can explain how users make various decisions (e.g.,
querying or viewing documents) in the search process and suggest
an operational algorithm that can generate user actions in response
to a search engine. However, we are currently far from such a model.
For example, none of the current methods for query simulation
suggests any hypothesis about the process that a user might have
followed in formulating a query. This is partly due to the lack of
understanding of the internal cognitive and reasoning processes in
auser’s mind, which requires more progress in research in cognitive
science, information science, and human-computer interaction.

We can approach such an ideal computational model of users in
two directions: 1) We can do user studies to sufficiently understand
search users to be able to design a computational user model to
simulate the understood user behavior. 2) We can design a compu-
tational user model that is as explanatory as possible of the user
behavior. The proposed PRE framework can be regarded as taking
the second direction and making a step toward building an inter-
pretable and explanatory computational model for simulating a
user’s query formulation/reformulation process. PRE is designed
based on multiple hypotheses about how exactly a user formulates
a query. Our preliminary evaluation results provide some evidence
to support the hypotheses, but clearly, more research is needed to
further assess the validity of the hypotheses proposed in PRE, espe-
cially via designing appropriate user studies or leveraging search
log data to more rigorously examine those hypotheses.

As a novel framework, PRE opens up many interesting opportu-
nities for future research.

First, PRE can easily accommodate the incorporation of or com-
bination with additional formal models of user behavior to further
advance the development of interpretable computational models of
users. For example, any click models or browsing behavior models
can be combined with PRE to provide a more complete simulation
model of a user.

Second, from a practical viewpoint, PRE offers three lines of
immediate benefits: 1) It provides a general formal framework that
we can use to compare the existing query simulation methods and
systematically examine their effectiveness from the perspective of
optimizing precision and recall and minimization of effort. 2) It
facilitates the design of many new simulation models via different
ways to instantiate each component of the PRE framework. This is
a promising direction as even the very basic instantiation strategies
explored in this paper already deliver comparable performance to

one of the frequently used state of the art query simulation method
QS3+ [35]. For example, DrCp instantiation method outperforms
QS3+ for Session track 2013 and 2014 datasets. There is much poten-
tial to further improve the effectiveness of query simulation using
the PRE framework by improving instantiations of the objective
models of PRE. 3) Its interpretable parameters enable simulation
of meaningful user variations in multiple dimensions, including,
e.g., variation in the relative importance of precision and recall,
variation in user’s initial knowledge state, variation in effective-
ness of a user’s learning during search session, and variation in
the tradeoff between the effort and effectiveness of the formulated
query. Exploration of such directions is an important future work.

Third, PRE provides a theoretical roadmap for further exploration
of new ways to potentially model how a user estimates precision
and recall more accurately. We discuss two specific possibilities
here. 1) As a more intuitive way to factor out precision and recall,
the models of precision and recall can be defined more similarly to

the precision and recall measures on retrieval results as follows,

. < (p(Match=1|q.d)p(rel|d
Expected_precision (q) = Ld CZ(S E(C pa( ]f,f atclhq:1)|1qj,51r)e D,

Zgec(p(Match=1|q,d)p(rel|d)
2Zaec p(relld) ’
where p(rel|d) is the probability that the document d is relevant.

2) The models of recall and precision can also be computed over
subtopics or facets of relevant information (like in [14]) instead of
the set of relevant documents. The set of relevant documents of an
information need often consists of multiple subtopics or facets and
to satisfy the information need, the user may want to care more
about maximizing recall and precision of the subtopics than those
of the documents in the retrieved results. Such a new model has the
potential for modeling query formulation in the context of complex
retrieval tasks.

Finally, the conclusions we have drawn in our experiments can
be further examined by performing more experiments and using
additional evaluation measures. Our use of Jaccard similarity is
justified based on the fact that the simulator model and most of
the real users used the same word set from the topic descriptions,
but it does not support inexact matching of semantically related
words. Although whether to support inexact matching appears to be
orthogonal to the hypotheses we are testing, meaning that adding
inexact matching will unlikely have a significant impact on the
conclusions we have drawn, it is necessary to further experiment
with other evaluation measures [13, 32] including new semantic
similarity measures such as BLEURT [44] in the future to further
verify our conclusions.

Expected_recall (q) =
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