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ABSTRACT
In this paper, we propose a new method called uncoupled nonnega-

tive matrix factorization (UNMF). UNMF enables us to analyze data

that cannot be represented by a matrix, due to the lack of correspon-

dence between the index and values of the matrix elements caused

by e.g., data collection under the constraint of privacy protection.

We derive the multiplicative update rules for parameter estimation

and confirm the effectiveness of UNMF by numerical experiments.

CCS CONCEPTS
• Computing methodologies→ Non-negative matrix factor-
ization; • Information systems→ Recommender systems.
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1 INTRODUCTION
For the analysis of data represented by a nonnegative matrix such

as document corpus, movie rating scores, purchase logs and survey

questionnaires, nonnegative matrix factorization (NMF) [16, 17]

is widely applied [6, 15, 23, 24]; NMF can extract latent patterns

within the data and complete missing values by decomposing the

input matrix into the product of two nonnegative factor matrices.

By applying NMF to movie ratings, for instance, we can extract

user’s rating patterns such as Sci-fi and comedy lover and predict a

user’s rating scores to movies not yet watched by the user.

The motivation of this study is to extend NMF to cover the anal-

ysis of uncoupled data, data that cannot be represented by a matrix

due to the lack of correspondence between the index and value of

the matrix elements. This is necessary, for example, when analyzing

survey data where the index-value relationship (e.g., correspon-

dence between user and answer of the user to a questionnaire item)
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has been removed for privacy protection, or analyzing social data

where the indexes and values are collected independently.

If contextual information about real entities corresponding to

the index (e.g., user) such as user’s sex, age and preferred movie

genre are available, we can establish correspondence between the

indexes and values by the approach called matching [18, 19] which

allows NMF to be applied; however, this approach seems to require

vast amounts of contextual information and failure of the recovery

degrades NMF performance. Thus it is promising to build a method

that does not involve correspondence recovery.

In this study, we propose a new method called uncoupled non-

negative matrix factorization (UNMF) that estimates factor matrices

directly from uncoupled data without recovering the index-value

correspondence. The key to our method construction is to use the

approach of uncoupled regression (UR) [1, 5, 12, 20, 22], especially

the approach of Xu et al. [22] which estimates regression models

using uncoupled data and pairwise comparison data (PCD) contain-
ing ranking information that indicates that, given two indexes of

matrix elements, which value of the element is larger than that of

the other. This data can be collected by asking users “who is older

than you?", “who has a higher income than you?" etc. Even if the

question is about the sensitive matter such as age and income, it

is easier for users to answer such indirect questions than direct

questions since the value itself needs not to be disclosed.

Given both uncoupled data and PCD, we derive the objective

function of UNMF by approximating the expected Bregman diver-

gence and provide multiplicative update rules for estimating the

factor matrices. This allows us to extract latent patterns underlying

the uncoupled data and to predict values of the matrix elements.

We conduct experiments on both synthetic and real data to confirm

that UNMF matches the performance attained by oracle NMF on

coupled data whose index-value relationships is known.

2 RELATEDWORKS
NMF is regarded as a key unsupervised learning algorithm since

its relation to many algorithms has been clarified e.g.,[9, 10]. For

example, Ding et al. [10] proved that NMF is equivalent to proba-

bilistic latent semantic indexing [11], which is the basis of latent

Dirichlet allocation [3]. Thus, we develop our method on NMF.

Our problem is different from the missing value completion prob-

lem. Completion by NMF is done by first estimating factor matrices

from observed coupled data where index-value relationships are

known (see § 3). However, since the coupled data are not provided in

our problem, NMF cannot be applied. So our UNMF is constructed.

Our derivation of the loss function for UNMF uses the approach

of UR that conducts supervised learning from uncoupled data. Al-

though various studies for UR are known [1, 5, 12, 20, 22], it has

https://doi.org/10.1145/3539813.3545149
https://doi.org/10.1145/3539813.3545149
https://doi.org/10.1145/3539813.3545149


ICTIR ’22, July 11–12, 2022, Madrid, Spain Masahiro Kohjima

Table 1: Bregman divergence with various convex functions

domain 𝜑 (𝑥) 𝜓 (𝑥) = ∇𝜑 (𝑥) 𝑑𝜑 (𝑦, 𝑥)
SE R 𝑥2/2 𝑥 (𝑦 − 𝑥)2/2
KL R+ 𝑥 log(𝑥) log(𝑥) + 1 𝑦 log

𝑦
𝑥 − 𝑦 + 𝑥

been confirmed that the recovery of the correspondence between

input and output is NP-hard in general [20]. So we adopt an ap-

proach that does not estimate the correspondence [1, 5, 22]. Among

them, the model estimated needs to be monotone in [5] or linear

in [1]. So we construct UNMF that conducts unsupervised learning

from uncoupled data based on [22].

3 PRELIMINARY
Let 𝑛𝐼 , 𝑛 𝐽 , 𝑛𝑅 be positive integers. We define I = {1, · · · , 𝑛𝐼 } and
J = {1, · · · , 𝑛 𝐽 }. In the standard setting of NMF, a set of pairs of

index and value (i.e., coupled data) D𝑐𝑜𝑚𝑝 = {(𝑖𝑚, 𝑗𝑚, 𝑥𝑚)}
𝑛𝑐𝑜𝑚𝑝

𝑚=1
,

which can be represented by nonnegative matrix 𝑿 ∈ X𝑛𝐼 ×𝑛 𝐽 ⊂
R
𝑛𝐼 ×𝑛 𝐽

+ whose (𝑖𝑚, 𝑗𝑚)-th element is 𝑥𝑚 , is given.𝑛𝑐𝑜𝑚𝑝 is the num-

ber of pairs. The model parameter 𝜃 , which consists of two factor

matrices 𝑨 = {{𝑎𝑖𝑟 }𝑛𝑅𝑟=1}𝑖∈I and 𝑩 = {{𝑏𝑟 𝑗 }𝑛𝑅𝑟=1} 𝑗∈J , is estimated

by minimizing a loss function that is defined by some divergence

between 𝑿 and the product of the factor matrices 𝑿̂ whose (𝑖, 𝑗)-th
element is 𝑥𝑖 𝑗 =

∑𝑛𝑅
𝑟=1

𝑎𝑖𝑟𝑏𝑟 𝑗 . It is known that various types of loss

function can be expressed by Bregman Divergence (BD) 𝐷𝜑 [8, 21]

which is defined as

𝐷𝜑 (𝑿 , 𝑿̂ ) =
1

𝑛𝑐𝑜𝑚𝑝

∑︁
(𝑖𝑚, 𝑗𝑚,𝑥𝑚 ) ∈D𝑐𝑜𝑚𝑝

𝑑𝜑 (𝑥𝑚, 𝑥𝑖𝑚 𝑗𝑚 ),

𝑑𝜑 (𝑥,𝑦) = 𝜑 (𝑥) − 𝜑 (𝑦) − (𝑥 − 𝑦)𝜓 (𝑦),

where 𝜑 is a convex function and𝜓 is its 1st derivative𝜓 = ∇𝜑 . BD
generates various loss functions by varying 𝜑 [2, 4]. For example,

BD is the squared error (SE) if 𝜑 (𝑥) = 𝑥2/2, and is the generalized

KL-divergence (KL) if 𝜑 (𝑥) = 𝑥 log(𝑥) (See Table 1). We also use

BD for UNMF to handle various loss functions.

4 PROPOSED METHOD
4.1 Problem Formulation
Our proposed method, uncoupled nonnegative matrix factoriza-

tion (UNMF), estimates model parameter 𝜃 = {𝑨,𝑩} without re-
quiring coupled data D𝑐𝑜𝑚𝑝 . Instead, the following three types of

data D𝑈 ,D𝑉 and D𝐶 , made from uncoupled data and pairwise

comparison data (PCD), are given in our problem.

To provide intuitive explanation of our problem, consider the

following scenario of survey data collection. Each user 𝑗 is asked

to answer questionnaire items 𝑖 (e.g., age, weight, annual income)

and user’s answer 𝑥 is recorded without tying it to user’s identifier

𝑗 for privacy protection. Thus, even if many answers about item

𝑖 are collected, we do not know which answer came from which

user, i.e., the (user-) index and the values are uncoupled. We call

the data obtained by this collection process uncoupled data.

Uncoupled Data D𝑈 ∪D𝑉 : Due to the lack of correspondence

between the index and value, the uncoupled data cannot be repre-

sented by a matrix but can be represented by (i) a set of user-item

pairs D𝑈 = {(𝑖𝑚, 𝑗𝑚)}𝑛𝑈𝑚=1
that record user 𝑗𝑚 answered item

𝑖𝑚 , and (ii) a set of item-answer pairs D𝑉 = {(𝑖𝑚, 𝑥𝑚)}𝑛𝑉𝑚=1
that

record answers 𝑥𝑚 for each item 𝑖𝑚 . We call D𝑈 missing value
data (MVD) and D𝑉 missing index data (MID). 𝑛𝑈 and 𝑛𝑉 is the

number of pairs in MVD and MID, respectively. Note that 𝑛𝑈 ≠𝑛𝑉
in general since e.g., some invalid answers like “N/A" or “300 years

old" may be removed from MID. We denote a subset of D𝑈 such

that 𝑖𝑚 = 𝑖 ( 𝑗𝑚 = 𝑗 ) as D𝑈𝑖
(D𝑈 𝑗

). We also denote a subset of D𝑉

such that 𝑖𝑚 = 𝑖 as D𝑉𝑖 . The size of #D𝑉𝑖 is given by the symbol

𝑛𝑉𝑖 .

Note that the scope of our study is not limited to this example.

For example, user’s viewing logs that record user 𝑗 watches movie 𝑖

and movie’s rating logs that movie 𝑖 is rated as score 𝑥 are collected

individually, they are represented by D𝑈 and D𝑉 .

Pairwise Comparison Data D𝐶 : As stated in § 1, we use

(iii) PCDwhich is defined byD𝐶 = {(𝑖𝑚, 𝑗+𝑚, 𝑗−𝑚)}
𝑛𝐶
𝑚=1

where (𝑖𝑚, 𝑗+𝑚 ,

𝑗−𝑚) indicates that the value of (𝑖𝑚, 𝑗+𝑚)-th element is larger than

that of (𝑖𝑚, 𝑗−𝑚)-th element, and 𝑛𝐶 is the number of data items.

We denote a subset of D𝐶 such that 𝑖𝑚 = 𝑖 as D𝐶𝑖
. Similarly, we

denote another subset such that 𝑗+𝑚 = 𝑗 ( 𝑗−𝑚 = 𝑗 ) asD𝐶+
𝑗
(D𝐶−

𝑗
). We

consider the setting where only a small amount of PCD is available

and the order of all indices in uncoupled data cannot be determined.

4.2 Loss Function and Approximation
To derive the loss function for UNMF, we define random variables

and probability distributions. Let 𝐼 , 𝐽 and 𝑋 be random variables on

I,J andX, respectively. We assume these random variables follow

some distribution 𝑃𝐼 ,𝐽 ,𝑋 . The marginal distribution on I (marginal-

ized over 𝐽 , 𝑋 ) is denoted as 𝑃𝐼 . We also denote the conditional

distribution and its probability density function (PDF) given 𝐼 = 𝑖

as 𝑃 𝐽 ,𝑋 |𝑖 and 𝑓𝐽 ,𝑋 |𝑖 , respectively. Its marginal distribution on J (X)
is denoted as 𝑃 𝐽 |𝑖 (𝑃𝑋 |𝑖 ). Using these notations, we define the loss
function for UNMF by the following expected BD:

R(𝜃 ) = E𝐼 ,𝐽 ,𝑋 [𝑑𝜑 (𝑋, 𝑥𝐼 𝐽 )] = E𝐼 [R𝑖 (𝜃 )], (1)

where E𝐼 ,𝐽 ,𝑋 and E𝐼 is the expectation over 𝑃𝐼 ,𝐽 ,𝑋 and that over 𝑃𝐼 ,

respectively. R𝑖 is defined as follows.

R𝑖 (𝜃 ) = ℭ𝑖 − E𝐽 |𝑖 [𝜑 (𝑥𝑖 𝐽 ) − 𝑥𝑖 𝐽𝜓 (𝑥𝑖 𝐽 )] − E𝐽 ,𝑋 |𝑖 [𝑋𝜓 (𝑥𝑖 𝐽 )], (2)

whereℭ𝑖 is a constant term and E𝐽 ,𝑋 |𝑖 (E𝐽 |𝑖 ) is the expectation over
𝑃 𝐽 ,𝑋 |𝑖 (𝑃 𝐽 |𝑖 ). Note that if 𝐼 , 𝐽 follows a uniform distribution on I,J
and 𝑋 is replaced by sample realization, the loss R is equivalent to

BD 𝐷𝜑 used in standard NMF (See § 3).

The difficulty of evaluating R comes from the final term in Eq. (2)

which involves the expectation over 𝑃 𝐽 ,𝑋 |𝑖 , E𝐽 ,𝑋 |𝑖 [𝑋𝜓 (𝑥𝑖 𝐽 )]. This
term cannot be evaluated even if taking sample approximation since

the user 𝑗 and the answer 𝑥 are not observed simultaneously.

To (approximately) evaluate the above problematic term, we

introduce a pair of random variables on J , (𝐽+, 𝐽 −); it indicates the
value of the (𝑖, 𝐽+)-th element is larger than that of the (𝑖, 𝐽 −)-th
element. Formal definition is given by

𝐽+ =

{
𝐽 (𝑋 ≥ 𝑋 ′)
𝐽 ′ (𝑋 < 𝑋 ′)

, 𝐽 − =

{
𝐽 ′ (𝑋 ≥ 𝑋 ′)
𝐽 (𝑋 < 𝑋 ′)

,

where (𝐽 , 𝑋 ) and (𝐽 ′, 𝑋 ′) are two independent random variables

following 𝑃 𝐽 ,𝑋 |𝑖 . We denote the conditional distribution and its PDF

of 𝐽+ (𝐽 −) given 𝐼 = 𝑖 as 𝑃 𝐽 + |𝑖 (𝑃 𝐽 − |𝑖 ) and 𝑓𝐽 + |𝑖 (𝑓𝐽 − |𝑖 ), respectively.
The expectation over 𝑃 𝐽 + |𝑖 (𝑃 𝐽 − |𝑖 ) is written as E𝐽 + |𝑖 (E𝐽 − |𝑖 ). Later,
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we will use the fact that sample (𝑖𝑚, 𝑗+𝑚, 𝑗−𝑚) in PCD is regarded as

a realization of (𝐽+, 𝐽 −) given 𝐼 = 𝑖𝑚 . The use of (𝐽+, 𝐽 −) connects
the terms using expectation over 𝑃 𝐽 + |𝑖 , 𝑃 𝐽 − |𝑖 and 𝑃𝑋,𝐽 |𝑖 :

Lemma 4.1. Let 𝑓𝑋 |𝑖 and 𝐹𝑋 |𝑖 be PDF and cumulative density
function (CDF) of probability distribution 𝑃𝑋 |𝑖 , respectively. Then,
E𝐽 + |𝑖 [𝜓 (𝑥𝑖 𝐽 + )] = 2E𝐽 ,𝑋 |𝑖 [𝐹𝑋 |𝑖 (𝑋 )𝜓 (𝑥𝑖 𝐽 )] and E𝐽 − |𝑖 [𝜓 (𝑥𝑖 𝐽 − )] =

2E𝐽 ,𝑋 |𝑖 [{1 − 𝐹𝑋 |𝑖 (𝑋 )}𝜓 (𝑥𝑖 𝐽 )].

Proof. From the definition of 𝐽+, 𝑓𝐽 + |𝑖 is written as

𝑓𝐽 + |𝑖 ( 𝑗) =
1

𝑍

∬ ∑︁
𝑗 ′∈J 𝑓𝐽 ,𝑋 |𝑖 ( 𝑗, 𝑥) 𝑓𝐽 ,𝑋 |𝑖 ( 𝑗

′, 𝑥 ′)I(𝑥>𝑥 ′)𝑑𝑥𝑑𝑥 ′

=
1

𝑍

∫
𝑓𝐽 ,𝑋 |𝑖 ( 𝑗, 𝑥)

[∫
𝑓𝑋 |𝑖 (𝑥 ′)I(𝑥 > 𝑥 ′)𝑑𝑥 ′

]
𝑑𝑥

=
1

𝑍

∫
𝑓𝐽 ,𝑋 |𝑖 ( 𝑗, 𝑥)𝐹𝑋 |𝑖 (𝑥)𝑑𝑥,

where 𝑍 is a normalizing factor and 𝑍 = 1/2 is obtained by integra-

tion by parts. Then, we get E𝐽 + |𝑖 [𝜓 (𝑥𝑖 𝐽 + )] =
∫
𝜓 (𝑥𝑖 𝑗 ) 𝑓𝐽 + |𝑖 ( 𝑗)𝑑 𝑗 =

2E𝐽 ,𝑋 |𝑖 [𝐹𝑋 |𝑖 (𝑋 ) 𝜓 (𝑥𝑖 𝐽 )]. The equation for E𝐽 − |𝑖 [𝜓 (𝑥𝑖 𝐽 − )] is ob-
tained in an analogous manner. □

The term E𝐽 ,𝑋 |𝑖 [𝐹𝑋 |𝑖 (𝑋 )𝜓 (𝑥𝑖 𝐽 )] in Lemma 4.1 is different from

the problematic term E𝐽 ,𝑋 |𝑖 [𝑋𝜓 (𝑥𝑖 𝐽 )] in Eq. (2) but can be used as

the approximation. This leads the approximated loss function
˜R:

Theorem 4.2. Suppose that there exists a constant M such that
𝜓 (𝑥) < 𝑀 for all 𝑥 ∈ X. The loss R(𝜃 ) is approximated by ˜R(𝜃 ;𝑤, 𝜆)
= E𝐼 [ ˜R𝑖 (𝜃 ;𝑤𝑖 , 𝜆𝑖 )] and its approximation error E𝐼 [|R𝑖 (𝜃 ) − ˜R𝑖 (𝜃 ) |]
is bounded by E𝐼 [Err𝑖 (𝑤𝑖 )] where

˜R𝑖 (𝜃 ;𝑤𝑖 , 𝜆𝑖 ) = ℭ𝑖 − E𝐽 |𝑖 [𝜑 (𝑥𝑖 𝐽 ) − (𝑥𝑖 𝐽 − 𝜆𝑖 )𝜓 (𝑥𝑖 𝐽 )]

−
(
𝑤𝑖1−

𝜆𝑖

2

)
E𝐽 + |𝑖 [𝜓 (𝑥𝑖 𝐽 + )]−

(
𝑤𝑖2−

𝜆𝑖

2

)
E𝐽 − |𝑖 [𝜓 (𝑥𝑖 𝐽 − )],

Err𝑖 (𝑤𝑖 ) =
∫

𝑓𝑋 |𝑖 (𝑥)
��ℎ𝑖 (𝑥 ;𝑤𝑖 )

��𝑑𝑥, (3)

ℎ𝑖 (𝑥 ;𝑤𝑖 ) = 𝑥 − 2𝑤𝑖1𝐹𝑋 |𝑖 (𝑥) − 2𝑤𝑖2{1 − 𝐹𝑋 |𝑖 (𝑥)}.

Proof. Taking the sum of the equations in Lemma 1, we get

E𝐽 ,𝑋 |𝑖 [𝜓 (𝑥𝑖 𝐽 )] = 1

2
E𝐽 + |𝑖 [𝜓 (𝑥𝑖 𝐽 + )] + 1

2
E𝐽 − |𝑖 [𝜓 (𝑥𝑖 𝐽 − )]. Then, as the

value of
˜R𝑖 does not depend on 𝜆𝑖 , we focus on ˜R𝑖 (𝜃 ;𝑤𝑖 , 0). Since

|R𝑖 (𝜃 ) − ˜R𝑖 (𝜃 ;𝑤𝑖 , 0) |
=
��E𝐽 ,𝑋 |𝑖 [𝑋𝜓 (𝑥𝑖 𝐽 )]−𝑤𝑖1E𝐽 + |𝑖 [𝜓 (𝑥𝑖 𝐽 + )]−𝑤𝑖2E𝐽 − |𝑖 [𝜓 (𝑥𝑖 𝐽 − )]

��
=

���∑︁
𝑗∈J

∫
𝑓𝐽 ,𝑋 |𝑖 ( 𝑗, 𝑥)𝜓 (𝑥𝑖 𝑗 )ℎ𝑖 (𝑥 ;𝑤𝑖 )𝑑𝑥

���
≤
∑︁

𝑗∈J

∫
𝑓𝐽 ,𝑋 |𝑖 ( 𝑗, 𝑥)

��𝜓 (𝑥𝑖 𝑗 )��ℎ𝑖 (𝑥 ;𝑤𝑖 )
��𝑑𝑥 ≤ 𝑀Err𝑖 (𝑤𝑖 ),

which yields the bound. □

The approximation is exact if 𝐹𝑋 |𝑖 is a uniform distribution, i.e.,

𝐹𝑋 |𝑖 (𝑥) = (𝑥−𝑎𝑖 )/(𝑏𝑖−𝑎𝑖 ) for all 𝑥 ∈ [𝑎𝑖 , 𝑏𝑖 ], sinceℎ𝑖 (𝑥 ;𝑏𝑖/2, 𝑎𝑖/2)
= 0. For general non-uniform distributions we can optimize𝑤𝑖 by

minimizing the bound (explained later).

Since
˜R does not involve the term with expectation over 𝑃 𝐽 ,𝑋 |𝑖 ,

we can evaluate it using MVD D𝑈 and PCD D𝐶 . By removing

Algorithm 1 Uncoupled Nonnegative Matrix Factorization

Input: D𝑈 ,D𝑉 ,D𝐶 , 𝑛𝑅 Output: 𝜃 = {𝑨,𝑩}
1: Estimate𝑤𝑖 by minimizing Êrr𝑖 (𝑤𝑖 ) for each 𝑖 ∈ I.
2: Initialize𝑨 and 𝑩.
3: repeat
4: Update 𝑨 by Eq. (5) for SE or Eq. (6) for KL

5: Update 𝑩 by Eq. (5) for SE or Eq. (6) for KL

6: until a stopping condition is met

the constant terms and approximating the expectation by sample

averaging, we get the following empirical loss function
ˆR:

ˆR(𝜃 ;𝑤, 𝜆) (4)

= − 1

𝑛𝑈

∑︁
(𝑖𝑚, 𝑗𝑚 ) ∈D𝑈

{
𝜑 (𝑥𝑖𝑚 𝑗𝑚 ) − (𝑥𝑖𝑚 𝑗𝑚−𝜆𝑖𝑚 )𝜓 (𝑥𝑖𝑚 𝑗𝑚 )

}
− 1

𝑛𝐶

∑︁
(𝑖𝑚, 𝑗+𝑚, 𝑗−𝑚 ) ∈D𝐶

{
(𝑤𝑖𝑚1 − 𝜆𝑖𝑚/2)𝜓 (𝑥𝑖𝑚 𝑗+𝑚 )

+ (𝑤𝑖𝑚2 − 𝜆𝑖𝑚/2)𝜓 (𝑥𝑖𝑚 𝑗−𝑚 )
}

=
∑︁

𝑖∈I

∑︁
𝑗∈J

[
−𝛾𝑈𝑖 𝑗

{
𝜑 (𝑥𝑖 𝑗 ) − 𝑥𝑖 𝑗𝜓 (𝑥𝑖 𝑗 )

}
− 𝑧𝑖 𝑗𝜓 (𝑥𝑖 𝑗 )

]
,

where 𝑧𝑖 𝑗 = 𝛾
𝐶+
𝑖 𝑗
𝑤𝑖1 +𝛾𝐶

−
𝑖 𝑗
𝑤𝑖2 +

(
𝛾𝑈
𝑖 𝑗
−

𝛾𝐶
+

𝑖 𝑗
+𝛾𝐶−

𝑖 𝑗

2

)
𝜆𝑖 , and 𝛾

𝑈
𝑖 𝑗
, 𝛾𝐶

+
𝑖 𝑗
, 𝛾𝐶

−
𝑖 𝑗

are defined as 𝛾𝑈
𝑖 𝑗

= 𝑛−1
𝑈

∑
(𝑖𝑚, 𝑗𝑚 ) ∈D𝑈

I(𝑖𝑚 = 𝑖, 𝑗𝑚 = 𝑗), 𝛾𝐶+
𝑖 𝑗

=

𝑛−1
𝐶

∑
(𝑖𝑚, 𝑗+𝑚, 𝑗−𝑚 ) ∈D𝐶

I(𝑖𝑚 = 𝑖, 𝑗+𝑚 = 𝑗), 𝛾𝐶−
𝑖 𝑗

= 𝑛−1
𝐶

∑
(𝑖𝑚, 𝑗+𝑚, 𝑗−𝑚 ) ∈D𝐶

I(𝑖𝑚 = 𝑖, 𝑗−𝑚 = 𝑗). I(·) is the indicator function. Note that 𝜆𝑖 can
take an arbitrary value (see the proof of Theorem 4.2). That is,

even if 𝑗+𝑚 or 𝑗−𝑚 is missing, we can compute the loss by setting

𝜆𝑖 = 2𝑤𝑖1 or 2𝑤𝑖2 in Eq. (4). In the experiment, we set 𝜆𝑖 = 0 or

𝜆𝑖 = (𝑤𝑖1 +𝑤𝑖2)/2, similar to [22].

4.3 Algorithm
We construct the estimation algorithm using

ˆR (Eq. (4)) and the

error bound Err𝑖 (Eq. (3)). The algorithm consists of two steps:

(i) the estimation of𝑤𝑖 by minimizing the error bound and (ii) the

estimation of 𝜃 by solving the optimization problemmin𝜃
ˆR subject

to the non-negativity of 𝑨 and 𝑩. Pseudo code of the algorithm is

shown in Alg. 1. The details are explained below.

Estimation of 𝜃={𝑨,𝑩}: As shown in the next subsection, the

following “multiplicative" update rules can be used for estimation.

(𝑆𝐸) 𝑎𝑖𝑟 ← 𝑎𝑖𝑟

∑
𝑗∈J 𝑧𝑖 𝑗𝑏𝑟 𝑗∑

𝑗∈J 𝛾
𝑈
𝑖 𝑗
𝑥𝑖 𝑗𝑏𝑟 𝑗

, 𝑏 𝑗𝑟 ← 𝑏 𝑗𝑟

∑
𝑖∈I 𝑧𝑖 𝑗𝑎𝑖𝑟∑

𝑖∈I 𝛾
𝑈
𝑖 𝑗
𝑥𝑖 𝑗𝑎𝑖𝑟

, (5)

(𝐾𝐿) 𝑎𝑖𝑟 ← 𝑎𝑖𝑟

∑
𝑗∈J

𝑧𝑖 𝑗
𝑥𝑖 𝑗
𝑏𝑟 𝑗∑

𝑗∈J 𝛾
𝑈
𝑖 𝑗
𝑏𝑟 𝑗

, 𝑏 𝑗𝑟 ← 𝑏 𝑗𝑟

∑
𝑖∈I

𝑧𝑖 𝑗
𝑥𝑖 𝑗
𝑎𝑖𝑟∑

𝑖∈I 𝛾
𝑈
𝑖 𝑗
𝑎𝑖𝑟

. (6)

Equation (5) and (6) correspond to the update rules for the settings

where BD used in (1) is SE (𝜑 (𝑥) = 𝑥2/2) and KL(𝜑 (𝑥) = 𝑥 log(𝑥)),
respectively. If 𝑧𝑖 𝑗 is non-negative (we can ensure this by appropri-

ately setting𝑤𝑖 and 𝜆𝑖 ), we can easily confirm that the right hand

side of the update rule is (I) always non-negative and (II) unchanged

if 𝑥𝑖 𝑗 = 𝑧𝑖 𝑗/𝛾𝑈𝑖 𝑗 . Randomly setting initial (nonnegative) values of

𝑨,𝑩 and iteratively updating the matrices yields the factorization

results. Later, we show that the objective function is monotonically

decreasing and converges to (local) minima.
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Remark 1: These update rules are equivalent to the one for

(standard) NMF [17] if 𝛾𝑈
𝑖 𝑗

= 1/𝑛𝑈 and 𝑛𝑈 𝑧𝑖 𝑗 is regarded as the

observed element 𝑥𝑖 𝑗 . Matrix 𝑍 which is defined so that its (𝑖, 𝑗)-th
element 𝑧𝑖 𝑗 = 𝑛𝑈 𝑧𝑖 𝑗 can be seen as the Pseudo observation matrix.

Remark 2: In the computation of update rules, we can skip

the indexes (𝑖, 𝑗) which are not included in D𝑈 and D𝐶 since

𝛾𝑈
𝑖 𝑗

= 𝑧𝑖 𝑗 = 0. So the computational cost of the each step of this

algorithm is 𝑂 (𝐿𝑅) where 𝐿 is the total number of indexes that

appears at least once in D𝑈 or D𝐶 .

Estimation of𝑤={𝑤𝑖 }𝑖∈I : The upper bound Err𝑖 can be eval-

uated by sample approximation using MID D𝑉 as follows:

Êrr𝑖 (𝑤𝑖 )=
1

𝑛𝑉𝑖

∑︁
𝑥𝑚∈D𝑉𝑖

��𝑥𝑚−2𝑤𝑖1𝐹𝑋 |𝑖 (𝑥𝑚)−2𝑤𝑖2{1−𝐹𝑋 |𝑖 (𝑥𝑚)}
��,

where 𝐹𝑋 |𝑖 is the empirical 𝐹𝑋 |𝑖 , 𝐹𝑋 |𝑖 (𝑥) = (1/𝑛𝑉𝑖 )
∑
𝑥𝑚∈D𝑉𝑖

I(𝑥𝑚 ≤
𝑥). Adding some constraints for keeping the nonnegativity of 𝑧𝑖 𝑗

1
,

𝑤𝑖 is estimated by minimizing Êrr𝑖 using, e.g., L-BFGS method.

4.4 Algorithm Derivation and Analysis
Here we derived the update rules for SE (Eq. (5)) by the majorization

minimization (MM) [7, 13] and show its theoretical property
2
. The

loss
ˆR (Eq. (4)) with 𝜑 (𝑥) = 𝑥2

2
,
ˆR𝑆𝐸 , is expanded as

ˆR𝑆𝐸 (𝜃 ;𝑤, 𝜆) =
∑︁

𝑖∈I

∑︁
𝑗∈J

[𝛾𝑈
𝑖 𝑗

2

(∑︁𝑛𝑅

𝑟=1
𝑎𝑖𝑟𝑏𝑟 𝑗

)
2

− 𝑧𝑖 𝑗𝑥𝑖 𝑗
]
.

By applying Jensen’s inequality, we can derive the majorizing func-

tion F using auxiliary variable 𝑺 = {{𝑠𝑖 𝑗𝑟 }𝑛𝑅𝑟=1}𝑖∈I, 𝑗∈J that satisfy

𝑠𝑖 𝑗𝑟 ≥ 0 (∀(𝑖, 𝑗, 𝑟 )) and ∑
𝑟 𝑠𝑖 𝑗𝑟 = 1 (∀(𝑖, 𝑗)):

F (𝜃, 𝑺;𝑤, 𝜆) =
∑︁

𝑖∈I

∑︁
𝑗∈J

[𝛾𝑈
𝑖 𝑗

2

∑︁𝑛𝑅

𝑟=1

(𝑎𝑖𝑟𝑏𝑟 𝑗 )2

𝑠𝑖 𝑗𝑟
− 𝑧𝑖 𝑗𝑥𝑖 𝑗

]
.

It can be verified that this majorizing function has two properties:

(i)
ˆR𝑆𝐸 (𝜃 ;𝑤, 𝜆) ≤ F (𝜃, 𝑺;𝑤, 𝜆), (ii) ˆR𝑆𝐸 (𝜃 ;𝑤, 𝜆) = min𝑺 F (𝜃, 𝑺;𝑤, 𝜆),

where the equality holds if and only if 𝑠𝑖 𝑗𝑟 = 𝑎𝑖𝑟𝑏 𝑗𝑟 /(
∑
𝑟 ′ 𝑎𝑖𝑟 ′𝑏 𝑗𝑟 ′ ).

In the scheme of MM, minimization of function
ˆR𝑆𝐸 is indirectly

conducted by the following two steps:

(MM-step 1) Minimize F w.r.t. 𝑨 or 𝑩,
(MM-step 2) Minimize F w.r.t. 𝑺 (to safisty F = ˆR𝑆𝐸 ).

The necessary condition for a local minimum of F w.r.t.𝑨, which is
the partial derivative

𝜕F
𝜕𝑎𝑖𝑟

= 0, is simplified to𝑎𝑖𝑟 = (∑𝑗∈J 𝑧𝑖 𝑗𝑏𝑟 𝑗 )/
{∑𝑗∈J 𝛾

𝑈
𝑖 𝑗
𝑏2
𝑟 𝑗
/𝑠𝑖 𝑗𝑟 }. Substituting the equality condition of 𝑺 into

this, we get the update rule for 𝑨 shown in Eq. (5). The update rule

for 𝑩 is derived in an analogous manner. The following theorem

shows that a local minimum is obtained by iteratively updating 𝑨
and 𝑩.

Theorem 4.3. The loss function ˆR𝑆𝐸 is monotonically decreasing
under the update by Eq. (5). The loss function is invariant if and only
if 𝑨,𝑩 are at a stationary point.

Proof. Assume that 𝜃 = {𝑨,𝑩}, 𝑺 satisfy
ˆR𝑆𝐸 (𝜃 ) = F (𝜃, 𝑺) 3.

We denote the value of 𝑨 after MM-step 1 as 𝑨𝑛𝑒𝑤
and that of

1
In experiment, we added 𝑤𝑖1, 𝑤𝑖2 ≥ 0 which is a sufficient condition for the non-

negativity of 𝑧𝑖 𝑗 when 𝜆𝑖 = 0. We also use this when 𝜆𝑖 = (𝑤𝑖1 + 𝑤𝑖2 )/2 for fair

comparison since the nonnegativity was confirmed experimentally.

2
The derivation for KL (Eq. (6)) and the analysis follow in an analogous manner.

3
Note that we omit the notation of 𝑤 and 𝜆.

𝑺 after MM-step 2 as 𝑺𝑛𝑒𝑤 . Since F is convex w.r.t 𝑨, F (𝜃, 𝑺) ≥
F ({𝑨𝑛𝑒𝑤 ,𝑩}, 𝑺) hold. The property of majorizing function F also

yieldsF ({𝑨𝑛𝑒𝑤 ,𝑩}, 𝑺) ≥ F ({𝑨𝑛𝑒𝑤 ,𝑩}, 𝑺𝑛𝑒𝑤) = ˆR𝑆𝐸 ({𝑨𝑛𝑒𝑤 ,𝑩}).
Then, we get

ˆR𝑆𝐸 (𝜃 ) ≥ ˆR𝑆𝐸 ({𝑨𝑛𝑒𝑤 ,𝑩}). Since the proof for the
update of 𝑩 can be obtained in an analogous manner, we complete

the proof. □

5 EXPERIMENTS
We conducted experiments on synthetic and real datasets to confirm

the effectiveness of UNMF. Since UNMF is the first factorization

method that can deal with uncoupled data, we investigate how

closely the performance of UNMF can approach to that of oracle
NMF using coupled data by increasing the size of PCD.

Synthetic data (SYNTH): We generated (true) matrix 𝑿∗ whose
sizes are 𝑛𝐼=𝑛 𝐽 =10 by adding Gaussian noise with mean of 0.0 and

s.t.d of 0.6 to the matrix 𝑋̃ whose (𝑖, 𝑗)-th element is 2.0+ 𝑗+1
2
I(𝑖, 𝑗 ≤

4) + 𝑗−4
2
I(𝑖, 𝑗 ≥ 5). We prepared five data sets by dividing the ele-

ments of 𝑿∗ into five, using 80% of the data as a training set and

the remaining 20% as a test set. Removing the index-value relation-

ship from the training data, we made MVD D𝑈 and MID D𝑉 . PCD

D𝐶 were also made by randomly extracting 𝑛𝑝𝑒𝑟={6, 8, 10, · · · , 28}
pairs of columns from each row in the training data.

Real data (ML and SUSHI): We used MovieLens (ML) 4 and

sushi preference data (SUSHI) [14] 5
. ML includes users’ review

scores of movies ranging from 1.0 (min) to 5.0 (max). SUSHI also
includes users’ preference scores of sushis ranging from 0.0 (min) to

4.0 (max). By taking the average of the rating score of each user for

each movie-genre/sushi-minor-group, we constructed user×genre
/group rating matrix 𝑿∗ whose size is 𝑛𝐼 = 943, 𝑛 𝐽 = 18 for ML
and 𝑛𝐼 = 5000, 𝑛 𝐽 = 11 for SUSHI. Similar to the synthetic data,

we prepared five data sets by dividing the data and using 80% of

the data as a training set and 20% as a test set, and made MVD

MID, and PCD
6
. PCD D𝐶 were made by randomly extracting

𝑛𝑝𝑒𝑟 pairs of columns from each row in the training data. Note

that when the values of the chosen indexes are equivalent, e.g.,

𝑥𝑖 𝑗 = 𝑥𝑖 𝑗 ′ , we created two pairs (𝑖𝑚 = 𝑖, 𝑗+𝑚 = 𝑗, 𝑗−𝑚 = 𝑗 ′) and
(𝑖𝑚′ , 𝑗+𝑚′ = 𝑗 ′, 𝑗−

𝑚′ = 𝑗) 7.
Evaluation metric: As the performance metric, we adopted test

mean absolute error (Test MAE) defined as
1

|D𝑡𝑒𝑠𝑡 |
∑
(𝑖𝑚, 𝑗𝑚,𝑥𝑚 ) ∈T

|𝑥𝑚 − 𝑥𝑖𝑚 𝑗𝑚 |, where T is the set of element indexes in the test set

and | · | indicates the number of elements in the set. We used UNMF

with 𝜑 (𝑥) = 𝑥2 (i.e., squared error) and 𝜆𝑖 = 0 or 𝜆𝑖 = (𝑤𝑖1 +𝑤𝑖2)/2.
Baselines: The performance of UNMF is compared with that of

NMF using coupled data made from training data (ORACLE NMF);

PCD were not used for NMF. The number of factors, 𝑛𝑅 , for UNMF

and ORACLE-NMF was set to 2 for SYNTH and to 3 for ML and

SUSHI in common. The performance of random prediction (RAN-

DOM), which takes the value on [0.5, 6.5] (SYNTH), [1.0, 5.0] (ML)
or [0.0, 4.0] (SUSHI) uniformly, is also shown as a benchmark.

4
https://grouplens.org/datasets/movielens/100k/

5
https://www.kamishima.net/sushi/

6
Precisely speaking, we randomly extracted min(𝑛𝑝𝑒𝑟 ,

(ℓ𝑖
2

)
) pairs where ℓ𝑖 is the

number of training data whose row-index is 𝑖 . The total number of PCD in ML is

roughly 𝑛𝐶 ≈ 𝑛𝐼𝑛𝑝𝑒𝑟 .
7
The reason why we use genre/group-level matrix is to avoid that many pairs with

equal values are generated when creating PCD; the use of the item-level rating scores,

which are discrete values, can generate many pairs with equal values.

https://grouplens.org/datasets/movielens/100k/
https://www.kamishima.net/sushi/
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(a) SYNTH (b) ML (c) SUSHI

Figure 1: Result of test MAE performance for (a) synthetic data (SYNTH), (b) MovieLens (ML), and (c) Sushi preference
data (SUSHI) Average and standard deviation are shown. Lower values are better.

(a) True matrix 𝑿 ∗ (b) Estimated matrix 𝑿̂ (= 𝑨𝑩)

Figure 2: Visualization of (a) true matrix𝑿∗ and (b) estimated
matrix 𝑿̂ for synthetic data experiment when 𝑛𝑝𝑒𝑟 = 12.

Results: Figure 1 shows the results of the three experiments.

In the experiments, the performance of UNMF improves with the

number of PCD, and approaches the performance of ORACLE NMF.

This is an amazing result since UNMF does not use coupled data.

Moreover, we can confirm that UNMFwith 𝜆𝑖=
𝑤𝑖1+𝑤𝑖2

2
shows stable

performance even when only small amount of PCD is available.

Figure 2 also shows that UNMF well recovered the true matrix 𝑿∗.
These results imply that UNMF is effective in estimating factor

matrices from MVD, MID and PCD.

6 CONCLUSION
In this paper, we proposed UNMF in order to analyze uncoupled

data that cannot be represented by a matrix. We derived the loss

function that can be evaluated using uncoupled data and PCD from

the expected Bregman divergence, and provided the multiplicative

update algorithm with the theoretical support. The effectiveness of

the proposal was confirmed by experiments on both synthetic and

real data. Future work for this research includes examining other

divergences and a Bayesian extension.
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