
A General Framework for Pairwise Unbiased Learning to Rank
Alexey Kurennoy

alexey.kurennoy@zalando.ie

Zalando

Dublin, Ireland

John Coleman

john.coleman@zalando.ie

Zalando

Dublin, Ireland

Ian Harris

ian.harris@zalando.ie

Zalando

Dublin, Ireland

Alice Lynch

alice.lynch@zalando.ie

Zalando

Dublin, Ireland

Oisin Mac Fhearai

oisin.mac.fhearai@zalando.ie

Zalando

Dublin, Ireland

Daphne Tsatsoulis

daphne.tsatsoulis@zalando.ie

Zalando

Dublin, Ireland

ABSTRACT
Pairwise debiasing is one of the most effective strategies in reducing

position bias in learning-to-rank (LTR) models. However, limiting

the scope of this strategy, are the underlying assumptions required

by many pairwise debiasing approaches. In this paper, we develop

an approach based on a minimalistic set of assumptions that can

be applied to a much broader range of user browsing patterns and

arbitrary presentation layouts.We implement the approach as a sim-

plified version of the Unbiased LambdaMART and demonstrate that

it retains the underlying unbiasedness property in a wider variety of

settings than the original algorithm. Finally, using simulations with

"golden" relevance labels, we will show that the simplified version

compares favourably with the original Unbiased LambdaMART

when the examination of different positions in a ranked list is not

assumed to be independent.

CCS CONCEPTS
• Information systems→ Learning to rank.

KEYWORDS
ranking, position bias, unbiased learning-to-rank, pairwise debias-

ing

ACM Reference Format:
Alexey Kurennoy, John Coleman, Ian Harris, Alice Lynch, OisinMac Fhearai,

and Daphne Tsatsoulis. 2022. A General Framework for Pairwise Unbi-

ased Learning to Rank. In Proceedings of the 2022 ACM SIGIR Interna-
tional Conference on the Theory of Information Retrieval (ICTIR ’22), July
11–12, 2022, Madrid, Spain. ACM, New York, NY, USA, 10 pages. https:

//doi.org/10.1145/3539813.3545119

1 INTRODUCTION
Machine learning models for information retrieval and recommen-

dation are typically trained on implicit user feedback (such as clicks,

for instance). Implicit feedback has several attractive properties.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ICTIR ’22, July 11–12, 2022, Madrid, Spain
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9412-3/22/07. . . $15.00

https://doi.org/10.1145/3539813.3545119

For example, it is abundant and relatively cheap to obtain. How-

ever, it is prone to presentation biases. This means that the implicit

feedback corresponding to a certain item depends on the way the

item was presented to users during the feedback collection. One

important type of presentation bias that is especially pronounced

in ranking applications is position bias. This bias arises because

user attention is not spread equally between different positions in

a ranked list and some of the positions are seen or attract attention

more frequently than others.

The position bias renders items that are ranked low by the exist-

ing production system as less relevant to users than they really are.

Consequently, a machine learning method applied to the collected

data tends to mimic the current system. If the current production

model is not optimal, its sub-optimality is (at least, partially) passed

onto the new model. As a result, making improvements to the

existing ranking system becomes more difficult. This has several

undesirable implications such as worse user experience, lower rev-

enues, or fairness problems.

There has been a considerable amount of research on ways to

eliminate or reduce the position bias in learning-to-rank and rec-

ommendation models. Both the offline [1, 13] and the online [18]

environments have been considered and there exists work aiming

to unify the two [4, 19]. We also refer the reader to a recent survey

[7]. Note that the theme of position bias reduction is different from

offline policy evaluation (see [16, 17, 23] and other references in

[15]) even though the two domains have some similarities. While

offline policy evaluation focuses on assessing the loss that would

have been observed under a different policy the goal of debiasing

is to estimate the value of the loss that we would have observed if

the target signal based on the implicit feedback was not distorted

due to the position bias. From this perspective, debiasing is rele-

vant even when the only aim is to evaluate the existing ranking or

recommender system (i. e. the logging policy).

A lot of papers on the topic of position bias removal, including

the seminal work [13] and its subsequent generalisation [1], focused

on modifying objective functions that involve summations over

individual items in the training data.

Hu et. al. [11] proposed an alternative approach starting off of a

pairwise loss function which is a sum of terms that depend on pairs

of items rather than individual items. This approach, called pairwise
debiasing, gave rise to Unbiased LambdaMART - a state-of-the-art

method for unbiased learning-to-rank.

In this paper, we describe a general framework for pairwise

unbiased learning-to-rank. In contrast to existing theories, it relies

https://doi.org/10.1145/3539813.3545119
https://doi.org/10.1145/3539813.3545119
https://doi.org/10.1145/3539813.3545119

ICTIR ’22, July 11–12, 2022, Madrid, Spain Alexey Kurennoy et al.

on a smaller and more realistic set of assumptions. Importantly, we

do not require that the examination of different positions happen

independently. For example, if the user is presented with a number

of choices, the independent examination assumption would mean

that examining the bottom-most option does not increase in any

way the chances that earlier positions have been observed too.

However, when users tend to examine the choices in a top-down

fashion this property is unlikely to hold.

Furthermore, we do not assume that the probability of irrele-

vance and click absence (conditional on item and context features)

are proportional at each position. See [4, Section 4.1.4] for a discus-

sion of why this assumption is undesirable.

In addition to the above, our framework allows for arbitrary

presentation layouts and thus covers both web search where results

are typically displayed in a list and e-commerce where users are

usually presented with a grid of products.

We demonstrate how the framework can be used in several im-

portant contexts to produce unbiased learning-to-rank algorithms.

We also utilise the framework to show that a simplified version of

Unbiased LambdaMART maintains the underlying unbiasedness

property in a wider range of settings than the original algorithm.

We compare the simplified and the original Unbiased LambdaMART

in a semi-synthetic experiment and find that the simplified version

compares favourably to the original Unbiased LambdaMART when

the examination of different positions is not independent.

The contributions of the paper can be summarised as follows.

• Theory
We propose a general pairwise debiasing framework allow-

ing for arbitrary presentation layouts and a broad range of

user browsing patterns (including those in which there is

dependence in the examination of different positions). To

the best of our knowledge, this framework has the weakest

set of assumptions to date.

• Methods
– We show how the framework can be used to produce

unbiased learning-to-rank methods for important types

of user behaviour found in e-commerce and web search.

– We demonstrate that a simplified version of Unbiased

LambdaMART is robust in the sense that the underlying

unbiasedness property holds in a broad range of settings.

• Offline Experiments
We conduct an offline semi-synthetic experiment (based on

public data with "golden" relevance labels) and find that

the simplified version of Unbiased LambdaMART compares

favourably with the original algorithm when the examina-

tion of different positions does not happen independently.

The paper is structured as follows. We discuss related work

in Section 2. Section 3 presents the proposed pairwise debiasing

framework. This includes stating its assumptions, formulating a

novel unbiased version of the pairwise loss function, and proving

its unbiasedness. In Section 4, we demonstrate how our frame-

work can be used in several important settings to produce unbiased

learning-to-rank algorithms. Section 5 demonstrates that Unbiased

LambdaMART can be modified so that the underlying unbiased-

ness property holds in a wider range of situations. Finally, Section 6

contains the results of a semi-synthetic experiment in which we

compare the performance of the original and the simplified Unbi-

ased LambdaMART.

2 RELATEDWORK
The idea of pairwise debiasing along with the Unbiased Lamb-

daMART method were introduced in [11]. In addition to the stan-

dard examination hypothesis [8, Section 3.3] and the positivity of

observation propensities, [11] assumes that clicks on different items

happen independently of each other and that the probabilities of

irrelevance and click absence are proportional for each position.

A recent work [20] proposes an unbiased pairwise loss function

in the context of collaborative filtering with implicit feedback. It

avoids the assumption about the proportionality between the irrele-

vance and click absence probabilities but still assumes independence

between the examination of different positions. The eye-tracking

experiments in [12] suggest that people generally view web search

results from top to bottom which makes the reliance on the assump-

tion about the examination independence undesirable. When the

results are observed in a top-to-bottom fashion, the fact that an

item down the list has been observed increases the chances that

earlier items have been observed too and hence, the independence

of examination indicators cannot hold. As will be seen in Section 4,

our framework encompasses [20] as a special case.

Guo et. al. [10] build an unbiased learning-to-rank method fo-

cusing on the context of e-commerce. In this paper, we develop a

unified approach that can tackle both the grid-based e-commerce

domain and list-based web search scenarios (see examples in Sec-

tion 4).

3 PROPOSED FRAMEWORK
In this section, we formulate a pairwise loss which is unbiased under

only two assumptions: the examination hypothesis [8, Section 3.3]

and the positivity of observation propensities. By the latter, we

mean that each of the positions in the layout is observable by users

(i.e. there are no positions that can never be examined) and that

there are no pairs of positions that can never be examined jointly.

In learning-to-rank, the data is comprised of collections of items.

Such collections can be, for example, lists of links returned by a

web-search engine, grids of products in an online shop, or the set of

elements of a recommendation carousel. We will adopt a common

notation and use the letter 𝑞 to denote a single collection of items

from the data. This notation is likely to stem from the fact that each

of the collections often has an associated query-string but this is

not always the case and plays no role in the context of this research.

The set of all item collections in the data will be denoted by 𝑄 .

Furthermore, let 𝑛𝑞 stand for the number of items in collection

𝑞 ∈ 𝑄 and let 𝑥𝑞, 𝑖 denote the feature vector associated with the

𝑖-th item of collection 𝑞 ∈ 𝑄 . The feature vector can include both

the item attributes and the properties of the context (such as user

and query-string features). Finally, let 𝑟𝑞, 𝑖 be the relevance of the

item. The item relevance is generally unobserved. Instead, the data

contains a target label 𝑐𝑞, 𝑖 which is based on the user actions and

can be, for example, a click indicator. For the ease of exposition,

we will assume that both the relevance and the target label are

binary but the results can be easily generalised to the case where

the relevance and/or the label take more than two values.

A General Framework for Pairwise Unbiased Learning to Rank ICTIR ’22, July 11–12, 2022, Madrid, Spain

3.1 Assumptions
We make the following common assumption about the relationship

between the relevance and the observed target label (see, [8]).

Assumption 1 (the examination hypothesis). The target
label equals the true relevance if the user has examined the item and
is zero otherwise, i.e.

𝑐𝑞, 𝑖 = 𝑒𝑞, 𝑖 · 𝑟𝑞, 𝑖 , ∀𝑞 ∈ 𝑄 ∀ 𝑖 = 1, . . . , 𝑛𝑞,

where 𝑒𝑞, 𝑖 is the examination indicator.
Note that we do not assume that the examination indicator and

the relevance indicator are independent of each other (i.e. we do

not require that the probability of a click be the product of the

examination and the relevance probabilities). In personal search, for

example, the production system would adapt the ranking with each

request and place items that are relevant to the user who submitted

the request to more visible positions. In this scenario, being relevant

increases the chances of being seen and the independence between

relevance and examination does not hold.

Next, define the (conditional) examination probabilities

𝑝𝑞, 𝑖 = 𝑃{𝑒𝑞, 𝑖 = 1 | I𝑞}, 𝑞 ∈ 𝑄, 𝑖 = 1, . . . , 𝑛𝑞, (1)

and the (conditional) joint examination probabilities

𝑝𝑞, 𝑖, 𝑗 = 𝑃{𝑒𝑞, 𝑖𝑒𝑞, 𝑗 = 1 | I𝑞}, 𝑞 ∈ 𝑄, 𝑖, 𝑗 = 1, . . . , 𝑛𝑞, (2)

where I𝑞 = {𝑟𝑞, 1, . . . , 𝑟𝑞,𝑛𝑞 , 𝑥𝑞, 1, . . . , 𝑥𝑞,𝑛𝑞 } is a set of variables
we will condition upon in our analysis. See Section 3.3 below for

an example of how the examination probabilities (1) and (2) can be

estimated in practice.

Assumption 2. The examination probabilities defined in (1) and
(2) are non-zero.

3.2 Unbiased Pairwise Loss
Let 𝑓 be a (ranking) model. A pairwise loss function takes the

following form

𝐿𝑐 =
∑︁
𝑞

𝑛𝑞∑︁
𝑖, 𝑗=1

ℓ (𝑓 (𝑥𝑞, 𝑖), 𝑐𝑞, 𝑖 , 𝑓 (𝑥𝑞, 𝑗), 𝑐𝑞, 𝑗) . (3)

In other words, it is the sum of terms that correspond to item pairs

in the data. Those terms can be typically decomposed as follows

ℓ (𝑓 (𝑥𝑞, 𝑖), 𝑐𝑞, 𝑖 , 𝑓 (𝑥𝑞, 𝑗), 𝑐𝑞, 𝑗) =
= ℓ1, 1 (𝑓 (𝑥𝑞, 𝑖), 𝑓 (𝑥𝑞, 𝑗))𝑐𝑞, 𝑖𝑐𝑞, 𝑗

+ ℓ1, 0 (𝑓 (𝑥𝑞, 𝑖), 𝑓 (𝑥𝑞, 𝑗))𝑐𝑞, 𝑖 (1 − 𝑐𝑞, 𝑗)
+ ℓ0, 1 (𝑓 (𝑥𝑞, 𝑖), 𝑓 (𝑥𝑞, 𝑗)) (1 − 𝑐𝑞, 𝑖)𝑐𝑞, 𝑗

+ ℓ0, 0 (𝑓 (𝑥𝑞, 𝑖), 𝑓 (𝑥𝑞, 𝑗)) (1 − 𝑐𝑞, 𝑖) (1 − 𝑐𝑞, 𝑗) . (4)

Note that the functions ℓ1, 1, ℓ1, 0, ℓ0, 1, and ℓ0, 0 depend only on the

scores that the model assigns to the two items in the pair. In the

case of RankNet [5], for example, the four functions are
1

ℓ1, 1 (𝑓 (𝑥𝑞, 𝑖), 𝑓 (𝑥𝑞, 𝑗)) = 0,

ℓ1, 0 (𝑓 (𝑥𝑞, 𝑖), 𝑓 (𝑥𝑞, 𝑗)) = log

(
1 + 𝑒−𝜎 · (𝑓 (𝑥𝑞, 𝑖)−𝑓 (𝑥𝑞, 𝑗))

)
,

ℓ0, 1 (𝑓 (𝑥𝑞, 𝑖), 𝑓 (𝑥𝑞, 𝑗)) = log

(
1 + 𝑒−𝜎 · (𝑓 (𝑥𝑞, 𝑗)−𝑓 (𝑥𝑞, 𝑖))

)
,

ℓ0, 0 (𝑓 (𝑥𝑞, 𝑖), 𝑓 (𝑥𝑞, 𝑗)) = 0.

(5)

1
In the derivation of the RankNet algorithm, the functions ℓ1, 1 and ℓ0, 0 are non-zero

but the final algorithm ignores pairs with equal target labels which is equivalent to

setting the two functions to zero.

To make the notation more concise, we introduce the following

two vector functions:

z(𝑓 (𝑥𝑞, 𝑖), 𝑓 (𝑥𝑞, 𝑗)) =
©­­­«

ℓ1, 1 (𝑓 (𝑥𝑞, 𝑖), 𝑓 (𝑥𝑞, 𝑗))
ℓ1, 0 (𝑓 (𝑥𝑞, 𝑖), 𝑓 (𝑥𝑞, 𝑗))
ℓ0, 1 (𝑓 (𝑥𝑞, 𝑖), 𝑓 (𝑥𝑞, 𝑗))
ℓ0, 0 (𝑓 (𝑥𝑞, 𝑖), 𝑓 (𝑥𝑞, 𝑗))

ª®®®¬ ,
s(𝑏1, 𝑏2) =

©­­­«
𝑏1𝑏2

𝑏1 (1 − 𝑏2)
(1 − 𝑏1)𝑏2

(1 − 𝑏1) (1 − 𝑏2)

ª®®®¬ , 𝑏1, 𝑏2 ∈ {0, 1}.

(6)

The symbols 𝑏1 and 𝑏2 in the definition of s stand for two binary

indicators. Below we will use either click or relevance indicators in

their place. Note that the function s one-hot encodes the type of
the item pair. To be more specific, let us consider a given item pair

(𝑖, 𝑗) from collection 𝑞 ∈ 𝑄 . If s is computed from click indicators

𝑐𝑞, 𝑖 and 𝑐𝑞, 𝑗 , it equals (1, 0, 0, 0)T when both of the items were

clicked, (0, 1, 0, 0)T when only the first item from the pair was

clicked, (0, 0, 1, 0)T when only the second item was clicked, and

(0, 0, 0, 1)T when none of the two items was clicked. Similarly, if s
is computed from relevance indicators it gives analogous one-hot

encodings but with respect to the relevance of items 𝑖 and 𝑗 .

Using the notation introduced in (6), we can rewrite (3) and (4)

as follows:

𝐿 =
∑︁
𝑞

𝑛𝑞∑︁
𝑖, 𝑗=1

(
z(𝑓 (𝑥𝑞, 𝑖), 𝑓 (𝑥𝑞, 𝑗))

)T s(𝑐𝑞, 𝑖 , 𝑐𝑞, 𝑗) . (7)

The loss in (7) (or, equivalently, in (3)) is computed from the

implicit feedback (click indicators) as opposed to the true relevance

indicators since the latter are unavailable (unobserved). Because

of the position bias, the optimisation of (7) generally leads to sub-

optimal algorithms and may reinforce undesirable properties of

existing production systems (such as unfairness). Our goal now will

be to construct a matrix (denoted by A𝑞, 𝑖, 𝑗 below) that can convert

the term computed from the click indicators into the same term but

computed from the relevance indicators under the expectation sign.

In other words, this matrix will enable us to utilise the available

click data and “infer” how items 𝑖 and 𝑗 compare in terms of their

true relevance in expectation. Then by injecting this matrix into the

loss (7), we will obtain a new and unbiased loss function. This new

loss will be still computed from the clicks but its expected value

will equal that of the loss computed from the true (unobserved)

relevance values.

We begin by defining a matrix (function) B depending on two

examination indicators,

B(𝑒1, 𝑒2) =
©­­­«

𝑒1𝑒2 0 0 0

𝑒1 (1 − 𝑒2) 𝑒1 0 0

(1 − 𝑒1)𝑒2 0, 𝑒2 0

(1 − 𝑒1) (1 − 𝑒2) (1 − 𝑒1) (1 − 𝑒2) 1

ª®®®¬ . (8)

For any 𝑞 ∈ 𝑄 and 𝑖, 𝑗 = 1, . . . , 𝑛𝑞 , the matrix B(𝑒𝑞, 𝑖 , 𝑒𝑞, 𝑗) re-
lates the terms s(𝑐𝑞, 𝑖 , 𝑐𝑞, 𝑗) and s(𝑟𝑞, 𝑖 , 𝑟𝑞, 𝑗). Specifically, (under
Assumption 1) it holds that

s(𝑐𝑞, 𝑖 , 𝑐𝑞, 𝑗) = B(𝑒𝑞, 𝑖 , 𝑒𝑞, 𝑗) · s(𝑟𝑞, 𝑖 , 𝑟𝑞, 𝑗).

For example, if both of the two items are relevant (𝑟𝑞, 𝑖 = 1, 𝑟𝑞, 𝑗 = 1)

we have that s(𝑟𝑞, 𝑖 , 𝑟𝑞, 𝑗) = s(1, 1) = (1, 0, 0, 0)T. At the same time,

ICTIR ’22, July 11–12, 2022, Madrid, Spain Alexey Kurennoy et al.

if only the first of the two items gets examined (𝑒𝑞, 𝑖 = 1, 𝑒𝑞, 𝑗 = 0),

according to the examination hypothesis, we will only observe a

click on the first item and s(𝑐𝑞, 𝑖 , 𝑐𝑞, 𝑗) = s(1, 0) = (0, 1, 0, 0)T. It
holds thatB(1, 0) ·s(1, 1) = s(1, 0), i. e. the matrixB(1, 0) produces
what is observed (s(1, 0)) from the underlying relevance-based term

s(1, 1).
In practice, of course, we want to achieve the opposite: recon-

struct the unobserved true preference s(𝑟𝑞, 𝑖 , 𝑟𝑞, 𝑗) from the click

feedback s(𝑐𝑞, 𝑖 , 𝑐𝑞, 𝑗), at least, in expectation. To that end, we take

the inverse of the expectation of B and set

A𝑞, 𝑖, 𝑗 =
(
E[B(𝑒𝑞, 𝑖 , 𝑒𝑞, 𝑗) | I𝑞]

)−1
, 𝑞 ∈ 𝑄, 𝑖, 𝑗 = 1, . . . , 𝑛𝑞 .

As will be seen in the proof of Theorem 3.1 below, this matrix has

the desired property, that is it turns s(𝑐𝑞, 𝑖 , 𝑐𝑞, 𝑗) into s(𝑟𝑞, 𝑖 , 𝑟𝑞, 𝑗)
under the expectation sign.

Before formulating our unbiased loss and proving its unbiased-

ness, we note that although the definition of A𝑞, 𝑖, 𝑗 above involves

matrix inversion, this matrix can be computed directly and effi-

ciently from the examination probabilities (1) and (2). Specifically,

A𝑞, 𝑖, 𝑗 =

©­­­«
𝑎𝑞, 𝑖, 𝑗 0 0 0

𝑎𝑞, 𝑖 − 𝑎𝑞, 𝑖, 𝑗 𝑎𝑞, 𝑖 0 0

𝑎𝑞, 𝑗 − 𝑎𝑞, 𝑖, 𝑗 0, 𝑎𝑞, 𝑗 0

1 − 𝑎𝑞, 𝑖 − 𝑎𝑞, 𝑗 + 𝑎𝑞, 𝑖, 𝑗 1 − 𝑎𝑞, 𝑖 1 − 𝑎𝑞, 𝑗 1

ª®®®¬ ,
(9)

where 𝑎𝑞, 𝑖 and 𝑎𝑞, 𝑗 are the inverses of the individual examination

probabilities (1),

𝑎𝑞, 𝑖 = 1/𝑝𝑞, 𝑖 , 𝑎𝑞, 𝑗 = 1/𝑝𝑞, 𝑗 , 𝑖, 𝑗 = 1, . . . , 𝑛𝑞,

and 𝑎𝑞, 𝑖, 𝑗 is the inverse of the joint examination probability (2),

𝑎𝑞, 𝑖, 𝑗 = 1/𝑝𝑞, 𝑖, 𝑗 , 𝑖, 𝑗 = 1, . . . , 𝑛𝑞 .

We state that the following loss is unbiased,

𝐿𝑢 =
∑︁
𝑞

𝑛𝑞∑︁
𝑖, 𝑗=1

(
z(𝑓 (𝑥𝑞, 𝑖), 𝑓 (𝑥𝑞, 𝑗))

)T A𝑞, 𝑖, 𝑗 s(𝑐𝑞, 𝑖 , 𝑐𝑞, 𝑗) . (10)

Theorem 3.1. Under assumptions 1–2, the loss defined by (9)–(10),
is unbiased, i.e.

E[𝐿𝑢] = E

∑︁
𝑞

𝑛𝑞∑︁
𝑖, 𝑗=1

(
z(𝑓 (𝑥𝑞, 𝑖), 𝑓 (𝑥𝑞, 𝑗))

)T s(𝑟𝑞, 𝑖 , 𝑟𝑞, 𝑗) . (11)

Proof. First note that Assumption 1 implies that for all 𝑞 ∈ 𝑄

and all 𝑖, 𝑗 = 1, . . . , 𝑛𝑞 , the terms s(𝑐𝑞, 𝑖 , 𝑐𝑞, 𝑗) and s(𝑟𝑞, 𝑖 , 𝑟𝑞, 𝑗) are
related as follows,

s(𝑐𝑞, 𝑖 , 𝑐𝑞, 𝑗) = B(𝑒𝑞, 𝑖 , 𝑒𝑞, 𝑗) · s(𝑟𝑞, 𝑖 , 𝑟𝑞, 𝑗) (12)

with the matrix function B defined in (8).

Next, for any 𝑞 and any 𝑖, 𝑗 = 1, . . . , 𝑛𝑞 we have that

E[B(𝑒𝑞, 𝑖 , 𝑒𝑞, 𝑗) | I𝑞] =

=

©­­­«
𝑝𝑞, 𝑖, 𝑗 0 0 0

𝑝𝑞, 𝑖 − 𝑝𝑞, 𝑖, 𝑗 𝑝𝑞, 𝑖 0 0

𝑝𝑞, 𝑗 − 𝑝𝑞, 𝑖, 𝑗 0, 𝑝𝑞, 𝑗 0

1 − 𝑝𝑞, 𝑖 − 𝑝𝑞, 𝑗 + 𝑝𝑞, 𝑖, 𝑗 1 − 𝑝𝑞, 𝑖 1 − 𝑝𝑞, 𝑗 1.

ª®®®¬ (13)

Under Assumption 2, the matrix A𝑞, 𝑖, 𝑗 given by (9) is well-defined.

Combining its definition with (13), we compute that

A𝑞, 𝑖, 𝑗 E[B(𝑒𝑞, 𝑖 , 𝑒𝑞, 𝑗) | I𝑞] = I4 ∀𝑞 ∈ 𝑄 ∀ 𝑖, 𝑗 = 1, . . . , 𝑛𝑞,

(14)

where I4 is the identity matrix of size 4. Therefore, for all 𝑞 ∈ 𝑄

and all 𝑖, 𝑗 = 1, . . . , 𝑛𝑞 we have that

E

[(
z(𝑓 (𝑥𝑞, 𝑖), 𝑓 (𝑥𝑞, 𝑗))

)T A𝑞, 𝑖, 𝑗 s(𝑐𝑞, 𝑖 , 𝑐𝑞, 𝑗)
]
=

= E

[
E

[(
z(𝑓 (𝑥𝑞, 𝑖), 𝑓 (𝑥𝑞, 𝑗))

)T A𝑞, 𝑖, 𝑗 s(𝑐𝑞, 𝑖 , 𝑐𝑞, 𝑗) | I𝑞
]]

= E

[(
z(𝑓 (𝑥𝑞, 𝑖), 𝑓 (𝑥𝑞, 𝑗))

)T A𝑞, 𝑖, 𝑗 E
[
s(𝑐𝑞, 𝑖 , 𝑐𝑞, 𝑗) | I𝑞

]]
= E

[(
z(𝑓 (𝑥𝑞, 𝑖), 𝑓 (𝑥𝑞, 𝑗))

)T
× A𝑞, 𝑖, 𝑗 E

[
B(𝑒𝑞, 𝑖 , 𝑒𝑞, 𝑗) | I𝑞

]
s(𝑟𝑞, 𝑖 , 𝑟𝑞, 𝑗)

]
𝑒𝑞. (14)
= E

[(
z(𝑓 (𝑥𝑞, 𝑖), 𝑓 (𝑥𝑞, 𝑗))

)T s(𝑟𝑞, 𝑖 , 𝑟𝑞, 𝑗)] ,
which, together with the definition of 𝐿𝑢 (see formula (10)), implies

the unbiasedness property (11). □

The theorem above says that in expectation the loss function

that we introduced by (9)–(10) equals the loss computed from the

true (unobserved) relevance indicators.

Interestingly, the matrix E[B(𝑒𝑞, 𝑖 , 𝑒𝑞, 𝑗) | I𝑞] in (13) admits the

following interpretation. If we categorise the pair of items (𝑖, 𝑗) as
belonging to one of the following four types: type 1 (𝑟𝑞, 𝑖 = 1, 𝑟𝑞, 𝑗 =

1), type 2 (𝑟𝑞, 𝑖 = 1, 𝑟𝑞, 𝑗 = 0), type 3 (𝑟𝑞, 𝑖 = 0, 𝑟𝑞, 𝑗 = 1), or type 4

(𝑟𝑞, 𝑖 = 0, 𝑟𝑞, 𝑗 = 0) then the element of the matrix E[B(𝑒𝑞, 𝑖 , 𝑒𝑞, 𝑗) |
I𝑞] in row 𝑡1 and column 𝑡2 is the probability of a pair of type 𝑡2 to

appear as a pair of type 𝑡1 in the click feedback. It means that this

matrix consists of the probabilities of pair type distortion due to the

presence of position bias. The matrix A𝑞, 𝑖, 𝑗 used in the definition

of the unbiased loss (10) is the inverse of E[B(𝑒𝑞, 𝑖 , 𝑒𝑞, 𝑗) | I𝑞] but
as we explained before, it can be computed directly (without matrix

inversion).

There is another observation we would like to make. The terms

ℓ1, 1 (𝑓 (𝑥𝑞, 𝑖), 𝑓 (𝑥𝑞, 𝑗)) and ℓ0, 0 (𝑓 (𝑥𝑞, 𝑖), 𝑓 (𝑥𝑞, 𝑗)) in (4) are usually

set to zero (as in (5), for example). In the case of the conventional

pairwise loss (3)–(4) (or, equivalently, (7)) it means that the loss

is computed only from those pairs of items in which exactly one

of the items was clicked. The complexity of computing the con-

tribution of collection 𝑞 to the loss is then 𝑂 (𝐶𝑞 · 𝑁𝑞) where 𝐶𝑞
and 𝑁𝑞 are the numbers of clicked and non-clicked items of col-

lection 𝑞, respectively. In contrast, in the case of the unbiased loss

(10), not all of the remaining pairs will be eliminated because of

the presence of the matrix 𝐴𝑞, 𝑖, 𝑗 in the formula. Therefore, it is

legitimate to question whether the computation of the unbiased

loss has a higher complexity. Luckily, this is not the case as we will

explain now. Note that all the elements of the last column of 𝐴𝑞, 𝑖, 𝑗

except the bottom-most element are zero. It implies that as long

as ℓ0, 0 (𝑓 (𝑥𝑞, 𝑖), 𝑓 (𝑥𝑞, 𝑗)) = 0, the pairs of items in which none of

the items was clicked are still eliminated and the contribution of

collection 𝑞 to the unbiased loss can be computed in𝑂 (𝐶2

𝑞 +𝐶𝑞 ·𝑁𝑞)
operations, which is𝑂 (𝐶𝑞 ·𝑁𝑞) in the typical case when the number

of clicked items 𝐶𝑞 is lower than the number of non-clicked items

𝑁𝑞 . Thus, the complexity of computing the unbiased loss (10) is

A General Framework for Pairwise Unbiased Learning to Rank ICTIR ’22, July 11–12, 2022, Madrid, Spain

the same as the complexity of computing its conventional (biased)

counterpart.

3.3 Estimation of Examination Probabilities
We consider the estimation of examination probabilities (1) and (2)

as a separate big topic that is out of scope of this paper. However,

in this section we briefly discuss how those probabilities can be

estimated in practice.

When it comes to estimating the individual examination proba-

bilities (1), multiple methods have been suggested in the literature,

e.g. [2, 9, 13, 25, 26]. To the best of our knowledge, the estimation of

joint examination probabilities (2) has not been considered but as

will be seen from examples in Section 4 below, in many important

cases the joint examination probability 𝑝𝑞, 𝑖, 𝑗 can be either com-

puted from the individual examination probabilities 𝑝𝑞, 𝑖 and 𝑝𝑞, 𝑗
or expressed in terms of the same parameters. In such cases, the

estimation of the joint examination probabilities does not pose an

additional problem. That being said, estimating the joint examina-

tion probabilities directly is also possible. We will demonstrate that

by describing a procedure for their estimation which is analogous

to [13].

The method for the estimation of individual examination proba-

bilities in [13] assumes that the examination probability depends

only on the position where the respective item was placed, that is

𝑝𝑞, 𝑖 = 𝜃 (𝑟𝑎𝑛𝑘𝑞, 𝑖) ∀𝑞 ∀ 𝑖 = 1, . . . , 𝑛𝑞, (15)

where 𝜃 is some function that maps ranks to the associated exam-

ination probabilities (observation propensities). Suppose that an

analogous property holds for the joint examination probabilities,

i. e.

𝑝𝑞, 𝑖, 𝑗 = 𝜓 (𝑟𝑎𝑛𝑘𝑞, 𝑖 , 𝑟𝑎𝑛𝑘𝑞, 𝑗) ∀𝑞 ∀ 𝑖, 𝑗 = 1, . . . , 𝑛𝑞,

with some function𝜓 depending on a pair of ranks (positions). To

estimate the value of𝜓 for ranks 𝑘1 and 𝑘2 (𝑘1 < 𝑘2) we can do the

following. Whenever our existing ranker or recommender receives

a user request (query) we randomly decide whether to swap the pair

of items in positions 𝑘1 and 𝑘2 with the pair of items in positions 1

and 2. Let 𝑖 (𝑘1) and 𝑖 (𝑘2) be the items that the ranker assigns to

positions 𝑘1 and 𝑘2, respectively. Then if we do not do the swap

𝑃𝑛𝑜−𝑠𝑤𝑎𝑝 {𝑐𝑖 (𝑘1)𝑐𝑖 (𝑘2) = 1} = 𝜓 (𝑘1, 𝑘2)𝑃𝑛𝑜−𝑠𝑤𝑎𝑝 {𝑟𝑖 (𝑘1)𝑟𝑖 (𝑘2) = 1}
(16)

and if we do the swap

𝑃𝑠𝑤𝑎𝑝 {𝑐𝑖 (𝑘1)𝑐𝑖 (𝑘2) = 1} = 𝜓 (1, 2)𝑃𝑠𝑤𝑎𝑝 {𝑟𝑖 (𝑘1)𝑟𝑖 (𝑘2) = 1}. (17)

At the same time, since swapping has no effect on the intrinsic

relevance of the swapped items we have that

𝑃𝑛𝑜−𝑠𝑤𝑎𝑝 {𝑟𝑖 (𝑘1)𝑟𝑖 (𝑘2) = 1} = 𝑃𝑠𝑤𝑎𝑝 {𝑟𝑖 (𝑘1)𝑟𝑖 (𝑘2) = 1}. (18)

From (16)–(18) we conclude that

𝑃𝑛𝑜−𝑠𝑤𝑎𝑝 {𝑐𝑖 (𝑘1)𝑐𝑖 (𝑘2) = 1}
𝑃𝑠𝑤𝑎𝑝 {𝑐𝑖 (𝑘1)𝑐𝑖 (𝑘2) = 1} =

𝜓 (𝑘1, 𝑘2)
𝜓 (1, 2) . (19)

Finally, if it is fair to assume that the first position is always exam-

ined the probability of examining both positions 1 and 2 equals the

probability of examining position 2, that is

𝜓 (1, 2) = 𝜃 (2). (20)

Hence, having a consistent estimate of the individual examination

probability at position 2,
ˆ𝜃 (2), we can construct an estimate of the

joint examination probability at positions 𝑘1 and 𝑘2 as follows,

ˆ𝜙 (𝑘1, 𝑘2) = ˆ𝜃 (2) ·
∑
𝑞∈𝑄𝑛𝑜−𝑠𝑤𝑎𝑝

𝑐𝑖 (𝑘1)𝑐𝑖 (𝑘2)/|𝑄𝑛𝑜−𝑠𝑤𝑎𝑝 |∑
𝑞∈𝑄𝑠𝑤𝑎𝑝

𝑐𝑖 (𝑘1)𝑐𝑖 (𝑘2)/|𝑄𝑠𝑤𝑎𝑝 |

which is consistent due to (19), (20), and the consistency of
ˆ𝜃 (2).

Note that when the joint examination probabilities are estimated

directly the number of parameters is quadratic in the number of

positions but this can be mitigated by doing the estimation only for

some of the position pairs and extrapolating on the rest.

4 EXAMPLES
In this section, we will demonstrate how the proposed general

framework can be used to derive unbiased pairwise loss functions

in practice. We show by example that the framework allows us to

focus on computing the examination probabilities and that once

we compute them, an unbiased learning-to-rank method for the

corresponding setting gets produced “automatically”.

At this point, we will make the common simplifying assumption

(15), i. e. suppose that the individual examination probability de-

pends only on the position where the item is displayed. Contrary to

the discussion at the end of Section 3, we will not need to maintain

a similar assumption for the joint examination probabilities because

depending on the considered model of user browsing behaviour,

we will be able either to compute the joint examination probabili-

ties from the individual ones or to express them through the same

parameters. We consider three concrete examples of user browsing

behaviour below.

Independent Examination. If the examination of different

positions in the layout happens independently, it holds that

𝑝𝑞, 𝑖, 𝑗 = 𝜃 (𝑟𝑎𝑛𝑘𝑞, 𝑖)𝜃 (𝑟𝑎𝑛𝑘𝑞, 𝑗) . (21)

It can be easily checked that under this assumption the unbiased

pairwise loss (10) recovers the one proposed in [20, Section 3.1]

(and hence, the framework from [20] can be considered a special

case of ours).

Continuous Examination. In this browsing model, users ob-

serve items continuously from positions with smaller ranks to

positions with higher ranks without skipping. Eye-tracking experi-

ments in [12] give some evidence suggesting that this may generally

hold in web-search. In the case of such no-skipping behaviour,

𝑝𝑞, 𝑖, 𝑗 = min{𝜃 (𝑟𝑎𝑛𝑘𝑞, 𝑖), 𝜃 (𝑟𝑎𝑛𝑘𝑞, 𝑗)}.
An application of our framework (9)–(10) gives an unbiased pair-

wise loss for this settingwhich, to the best of our knowledge, has not

been proposed in the literature before. This loss can be optimised

(e.g. by means of gradient descent) to obtain unbiased learning-to-

rank models for the continuous examination setting.

Row skipping. Xie et al [27] analyse the behaviour of users
presented with a grid layout. One of the browsing models they

introduce is called "row skipping". As the name suggests, it captures

the tendency of users to skip over rows when going through the

grid layout. Specifically, it is assumed that at the start or after each

row the user skips the next row with probability 𝛾 , otherwise they

browse items in the row. After examining an item at rank 𝑣 the

user may stop browsing with probability (1 −𝐶𝑣). In this model,

ICTIR ’22, July 11–12, 2022, Madrid, Spain Alexey Kurennoy et al.

the function 𝜃 that maps ranks to their associated examination

probabilities takes the following form,

𝜃 (𝑢) =

𝑟𝑜𝑤 (𝑢)−1∏
𝑚=1

©­«(1 − 𝛾)
𝑆 (𝑚)+𝑁 (𝑚)∏
𝑣′=𝑆 (𝑚)+1

𝐶𝑣′ + 𝛾
ª®¬

× (1 − 𝛾)
𝑢−1∏

𝑣=𝑆 (𝑟𝑜𝑤 (𝑢))+1
𝐶𝑣, (22)

where 𝑟𝑜𝑤 (𝑢) is the row containing the rank𝑢,𝑁 (𝑚) is the number

of items in row𝑚, and 𝑆 (𝑚) is the total number of items before row

𝑚. In the above formula, the product before the × sign is the proba-

bility that the user does not quit before reaching the row containing

the rank 𝑢. Then (1 − 𝛾) accounts for the chance of skipping the

respective row and the last product is the probability that the user

does not stop before reaching the rank 𝑢 when examining items in

the row. The joint examination probability 𝑝𝑞, 𝑖, 𝑗 can be expressed

in a similar fashion. Specifically, denoting min{𝑟𝑎𝑛𝑘𝑞, 𝑖 , 𝑟𝑎𝑛𝑘𝑞, 𝑗 }
by ℎ𝑞, 𝑖, 𝑗 and max{𝑟𝑎𝑛𝑘𝑞, 𝑖 , 𝑟𝑎𝑛𝑘𝑞, 𝑗 } by𝑤𝑞, 𝑖, 𝑗 , we can write

𝑝𝑞, 𝑖, 𝑗 = 𝜃 (ℎ𝑞, 𝑖, 𝑗)
𝑆 (𝑟𝑜𝑤 (ℎ𝑞, 𝑖, 𝑗))+𝑁 (𝑟𝑜𝑤 (ℎ𝑞, 𝑖, 𝑗))∏

𝑣=ℎ𝑞, 𝑖, 𝑗

𝐶𝑣

×
𝑟𝑜𝑤 (𝑤𝑞, 𝑖, 𝑗)−1∏

𝑚=𝑟𝑜𝑤 (ℎ𝑞, 𝑖, 𝑗)+1

©­«(1 − 𝛾)
𝑆 (𝑚)+𝑁 (𝑚)∏
𝑣′=𝑆 (𝑚)+1

𝐶𝑣′ + 𝛾
ª®¬

× (1 − 𝛾)
𝑤𝑞, 𝑖, 𝑗−1∏

𝑣=𝑆 (𝑟𝑜𝑤 (𝑤𝑞, 𝑖, 𝑗))+1
𝐶𝑣, (23)

if items 𝑖 and 𝑗 were displayed in different rows and

𝑝𝑞, 𝑖, 𝑗 = 𝜃 (ℎ𝑞, 𝑖, 𝑗)
𝑤𝑞, 𝑖, 𝑗−1∏
𝑣=ℎ𝑞, 𝑖, 𝑗

𝐶𝑣 (24)

otherwise. The function 𝜃 in (23) and (24) is the one from (22).

Assuming that the parameters 𝛾 and𝐶𝑣 are known or have been

estimated, one can plug them in (22)–(24) and construct an unbi-

ased pairwise loss according to (9) and (10). This loss can be then

optimised to obtain an unbiased ranker for the case of row-skipping

behaviour. This is another example of how the framework from Sec-

tion 3 allows us to focus on computing the examination probabilities

and an unbiased learning-to-rank method for the corresponding

setting gets produced “automatically” - just by plugging them into

(9) and (10).

5 ROBUST UNBIASED LAMBDAMART
The unbiased loss proposed in Section 3 can be combined with the

so called “lambda-trick” [5] similarly to how it was done in [11].

The lambda-trick consists of re-weighting the item pairs in the

gradient of the loss function (such as (10)) so that the optimisation

process performs better at maximising an information retrieval

(IR) metric (such as NDCG). The weights are set to the absolute

difference |Δ𝑍𝑖, 𝑗 | in the respective IR metric when the two items of

the pair are swapped in the ranking induced by the current values

of model parameters. The re-weighted gradient of the underlying

pairwise loss function is called lambda-gradient.
As will be seen from the derivations below, the application of

the lambda-trick to the unbiased pairwise loss (10) from Section 3

generates an interesting insight. Specifically, the resulting algo-

rithm turns out to be the same regardless of the values of the joint

examination probabilities 𝑝𝑞, 𝑖, 𝑗 . It means that the algorithm arising

this way is valid as long as the examination hypothesis holds and

the observation propensities are positive. In particular, this is true

regardless of the specific user behaviour patterns (such as the ones

discussed in the previous section). This is especially interesting

given that the version of Unbiased LambdaMART stemming from

(10) is simpler than the original Unbiased LambdaMART in the

sense that it does not have some of its parameters.

Similarly to [5] and [11], we will set the loss values as in formula

(5). To write down an expression for the lambda-gradient based on

our unbiased loss (10), we first compute the gradient of (10) (with

z defined by (5)). We denote

𝜇𝑞, 𝑖, 𝑗 =
1

1 + 𝑒 𝑓 (𝑥𝑞, 𝑖)−𝑓 (𝑥𝑞, 𝑗)
.

With this notation, the gradient equals

(𝐿𝑢)′𝑞, 𝑖 =
𝑛𝑞∑︁
𝑗=1

[
(
−𝜎𝜇𝑞, 𝑖, 𝑗 (𝑎𝑞, 𝑖 − 𝑎𝑞, 𝑖, 𝑗) + 𝜎𝜇𝑞, 𝑗, 𝑖 (𝑎𝑞, 𝑗 − 𝑎𝑞, 𝑖, 𝑗)

)
𝑐𝑞, 𝑖𝑐𝑞, 𝑗

− 𝜎𝜇𝑞, 𝑖, 𝑗𝑎𝑞, 𝑖𝑐𝑞, 𝑖 (1 − 𝑐𝑞, 𝑗) + 𝜎𝜇𝑞, 𝑗, 𝑖𝑎𝑞, 𝑗 (1 − 𝑐𝑞, 𝑖)𝑐𝑞, 𝑗

]
. (25)

It can be seen that the gradient depends not only on pairs with

different target labels but also on pairs of items that were both

clicked. However, when we proceed with the lambda-trick the

contribution of such pairs gets eliminated since their respective

|Δ𝑍𝑖, 𝑗 | is zero. This gives the following formula for the lambda-

gradient.

𝜆𝑞, 𝑖 =

𝑛𝑞∑︁
𝑗=1

(
𝜆𝑞, 𝑖, 𝑗

𝑝𝑞, 𝑖
𝑐𝑞, 𝑖 (1 − 𝑐𝑞, 𝑗) −

𝜆𝑞, 𝑗, 𝑖

𝑝𝑞, 𝑗
(1 − 𝑐𝑞, 𝑖)𝑐𝑞, 𝑗

)
, (26)

where 𝜆𝑞, 𝑖, 𝑗 = −𝜎𝜇𝑞, 𝑖, 𝑗 and 𝜆𝑞, 𝑗, 𝑖 = −𝜎𝜇𝑞, 𝑗, 𝑖 . This version of Un-

biased LabmdaMART is compared with the original LambdaMART

and Unbiased LambdaMART in Table 1. It can be seen that the differ-

ence between formula (26) and the original Unbiased LambdaMART

is the absence of 𝑡− parameters
2
.

The lambda-gradient formula (26) can be alternatively viewed

as if it is obtained by omitting the terms corresponding to pairs of

clicked items in the gradient (25) and then applying the lambda-

trick heuristic in the “standard” way. From this perspective, one can

expect (26) to perform better when the contribution of such pairs

to the loss (10) is small - for example, when the clicks are sparse.

See also the discussion in Section 6.4 below.

In the next section we compare the performance of the simplified

Unbiased LambdaMART given by (26) with the original Unbiased

LambdaMART in a semi-synthetic experiment.

2
In Unbiased LambdaMART [11], the parameter 𝑡−

𝑘
is defined as the ratio between the

probability of click absence and the probability of irrelevance (at rank 𝑘).

A General Framework for Pairwise Unbiased Learning to Rank ICTIR ’22, July 11–12, 2022, Madrid, Spain

Table 1: Pair Contribution to the Lambda-Gradient (index 𝑞

is omitted)

Method Pair Type

𝑐𝑖 > 𝑐 𝑗 𝑐𝑖 < 𝑐 𝑗

LambdaMART [5] 𝜆𝑖, 𝑗 −𝜆 𝑗, 𝑖
Unbiased LambdaMART [11]

𝜆𝑖, 𝑗
𝜃 (𝑟𝑎𝑛𝑘𝑖)𝑡−𝑟𝑎𝑛𝑘𝑗

−𝜆 𝑗, 𝑖

𝜃 (𝑟𝑎𝑛𝑘 𝑗)𝑡−𝑟𝑎𝑛𝑘𝑖
Formula (26)

𝜆𝑖, 𝑗
𝜃 (𝑟𝑎𝑛𝑘𝑖)

−𝜆 𝑗, 𝑖

𝜃 (𝑟𝑎𝑛𝑘 𝑗)

6 EXPERIMENTAL SETUP AND RESULTS
We performed our simulation experiments using the Yahoo! C14

Learning to Rank Challenge
3
dataset. This dataset consists of 29921

queries divided into three parts (train, validation, and test). Each

query has an associated list of documents (of varying length). Every

document is described with a feature set containing 700 features

and supplied with a relevance label set by human editors [6]. The

relevance labels take values from 0 (irrelevant) to 4 (highly rele-
vant). We used the train part for simulations and the test part for

evaluation.

Our simulation setup is similar to that from [3] and [11].

6.1 Click Data Generation
The train part of the Yahoo! C14 dataset has 19944 queries. We

used the same initial rankings of the associated document lists as in

[11]
4
. Given those initial rankings, the lists were truncated at a fixed

position. We conducted several experiments with the truncation

position set to 10, 20, and 30. A small number of queries that did

not have any relevant documents were discarded
5
.

For each document, we generated
6
a relevance indicator and an

examination indicator. The click indicator was computed as the

product of the two.

Relevance indicators were generated as independent binary

(Bernoulli) random variables with the probability of success set

to

𝑃{𝑟𝑞, 𝑖 = 1} = (2𝑦𝑞, 𝑖 − 1)/15,
where 𝑦𝑞, 𝑖 is the manual relevance label provided in the dataset.

When generating the examination indicators we considered two

user browsing models mentioned in Section 4: continuous browsing

and independent examination. In both cases, the probability of

examining a given position was set as in [13], that is

𝑝𝑞, 𝑖 =
1

𝑟𝑎𝑛𝑘𝑞, 𝑖
, 𝑖 = 1, . . . , 𝑛𝑞 . (27)

In the case of independent examination, the examination indi-

cators were generated as independent Bernoulli random variables

with the probability of success defined above.

3
https://webscope.sandbox.yahoo.com/catalog.php

4
See https://github.com/acbull/Unbiased_LambdaMart.

5
In our experiments we do not generate noisy clicks. Consequently, the click data

generated for such queries would inevitably contain no clicks and would not be utilised

by any of the methods we compare. The number of discarded queries varied between

784, 802, or 908 depending on the truncation position.

6
Weused numpy.random.default_rng generator with the seed set to 2022. Our source
code for running the experiments is available at https://github.com/zalandoresearch/

pairwise-debiasing.

In contrast, in the case of continuous browsing the examination

indicators (corresponding to the same query) were dependent and

had the property

𝑟𝑎𝑛𝑘𝑞, 𝑖 ≤ 𝑟𝑎𝑛𝑘𝑞, 𝑗 ⇒ 𝑒𝑞, 𝑖 ≥ 𝑒𝑞, 𝑗 ∀𝑞 ∈ 𝑄 ∀ 𝑖, 𝑗 = 1, . . . , 𝑛𝑞 .

To achieve that we first randomly drew the last examined position

𝑑𝑞 ∈ {1, . . . , 𝑛𝑚𝑎𝑥 } where 𝑛𝑚𝑎𝑥 is the maximum document list

length. The distribution of the last examined position 𝑑𝑞 was set to

𝑃{𝑑𝑞 = 𝑘} =
{
1

𝑘
− 1

𝑘+1 , 𝑘 = 1, . . . , 𝑛𝑚𝑎𝑥 − 1,
1

𝑛𝑚𝑎𝑥
, 𝑘 = 𝑛𝑚𝑎𝑥 .

to match (27). After drawing 𝑑𝑞 for each query, we set the exami-

nation indicators as follows

𝑒𝑞, 𝑖 =

{
1, 𝑟𝑎𝑛𝑘𝑞, 𝑖 ≤ 𝑑𝑞,

0, 𝑟𝑎𝑛𝑘𝑞, 𝑖 > 𝑑𝑞
, 𝑖 = 1, . . . , 𝑛𝑞 .

The generation process was repeated for each query 16 times,

which formed our training data consisting of 306272 document lists

with associated click indicators.

6.2 Methods under Comparison
In our experiments, we compared the following learning-to-rank

algorithms.

LambdaMART trained on the click data. This is LambdaMART [5]

fit to the click data. Similarly to [11], we consider the performance

of this baseline as a lower bound. The reason is that it is trained on

(biased) implicit feedback data using a machine learning algorithm

that has no debiasing mechanism.

LambdaMART trained on the labeled data. This model is Lamb-

daMART [5] trained on the “golden” (ground-truth) relevance labels

provided in the dataset. The performance of this baseline is an up-

per bound since it is trained on manually labelled data, free from

the position bias.

Unbiased LambdaMART. This is the original Unbiased Lamb-

daMART from [11]. The examination propensities (𝑡+ parameters

in the terminology of [11]) were fixed at their true values (27). The

estimation of 𝑡− parameters was carried out in the usual way, i.e. as

part of the Unbiased LambdaMART training process. The algorithm

applies additive regularisation to the 𝑡+ and 𝑡− parameters (which

in our case affected only the 𝑡− parameters since 𝑡+ parameters

were fixed at their true values). The regularisation is controlled

by a hyper-parameter (denoted by 𝑝 in [11]). We considered three

values of it corresponding to no regularisation, 𝐿1-regularisation,

and 𝐿2-regularisation, respectively.

Robust Unbiased LambdaMART. It is the simplified version of

Unbiased LambdaMART that we constructed in Section 5. Note that

we used the true values of the observation propensities both in the

simplified and in the original versions of Unbiased LambdaMART

to have a fair comparison.

We did not include Regression-EM since Unbiased LambdaMART

showed a better performance compared to it in the experiments

from [11].

All of the models were trained using LightGBM [14]. The hyper-

parameters were set to the same values as in [11]. In particular,

the number of trees was 300, the learning rate equalled 0.05, the

maximum number of leaves in a tree was 31, the feature fraction

was 0.9, and the bagging fraction was set to 0.9.

https://webscope.sandbox.yahoo.com/catalog.php
https://github.com/acbull/Unbiased_LambdaMart.
https://github.com/zalandoresearch/pairwise-debiasing
https://github.com/zalandoresearch/pairwise-debiasing

ICTIR ’22, July 11–12, 2022, Madrid, Spain Alexey Kurennoy et al.

6.3 Evaluation Protocol
We evaluated the algorithms on the test part of the dataset using

the “golden” relevance judgements as target labels. The test part

contains 6983 queries of which 248 do not have any associated

documents with positive relevance labels and were excluded
7
. We

did not truncate the document lists at the evaluation stage.

We evaluated the algorithms with the NDCG metric because it

is the information retrieval metric we targeted when applying the

lambda-trick. Specifically, we used NDCG at cutoff positions 1, 3, 5,

and 10. We also report MAP for completeness.

6.4 Experimental Results
The experimental results are presented in Tables 2 and 3. In each of

the two tables, we report the absolute performance of unregularised

Unbiased LambdaMART and the relative performance of all of the

other methods (in percentages). The relative changes typeset in bold

are significant at a 5% significance level as assessed by a paired two-

sided t-test with Bonferroni correction
8
. We additionally checked if

the performance of Robust Unbiased LambdaMARTwas statistically

different from that of the original Unbiased LambdaMART with 𝐿2-

regularisation. Cases where the difference is statistically significant

(according to a paired two-sided t-test with a 5% significance level)

are highlighted with a frame.

Table 2 corresponds to the experiment with continuous exami-

nation. For that type of user behaviour, the robust version of Unbi-

ased LambdaMART outperforms the unregularised Unbiased Lamb-

daMART for all values of the truncation position with respect to

NDCG. The uplift is especially pronounced for larger values of the

truncation position (i. e. when the maximum training list length is

bigger) and for smaller values of the cut-off position in the NDCG

metric.

When the regularisation parameter in Unbiased LambdaMART

gets increased the performance of it catches up with that of Robust

Unbiased LambdaMART. This is expected because as the reguar-

isation parameter grows bigger the 𝑡− parameters in the original

Unbiased LambdaMART are regularised away and the method “con-

verges” to Robust Unbiased LambdaMART. However, it can be seen

from Table 2 that the sufficient level of regularisation needed for the

original Unbiased LambdaMART to perform on par with the robust

version depends on the maximum length of a training list. Note

that tuning the regularisation parameter on the click data using

conventional validation approaches can be misleading because the

click data is affected by the position bias. Instead, one would need

to use an unbiased version of the validation loss (such as (10)), simi-

larly to [21, Section 6.1.4]. Although the latter is a valid and feasible

approach, we still consider the absence of any debiasing-related

hyper-parameters in Robust Unbiased LambdaMART an advantage

since it is making the method simpler.

The evaluation results for independent examination can be found

in Table 3. In this setting, Robust Unbiased LambdaMART performs

better than the unregularised Unbiased LambdaMART for larger

7
The information retrieval metrics we used for evaluation are not defined for such

queries.

8
The Bonferroni correction was applied globally, i. e. across all of the reported

comparisons.

values of the truncation position (20 and 30). However, its per-

formance is slightly worse than that of Unbaised LambdaMART

when the maximum training list length equals 10. Our explanation

is that when both the loss function from [11] and the loss given

by (10) have similar unbiasedness properties (such as in the case

of independent browsing) the application of the lambda-trick on

top of the former can give a better result. This may be further ex-

plained by the fact that the loss from [11] does not contain terms

corresponding to pairs of clicked items which contribution gets

eliminated by the lambda-trick. This prompts to seek an adaptation

of the lambda-trick that would propagate the contribution of such

pairs into the lambda-gradient. We consider this a topic for future

research. Note that even in the case of independent examination

the comparison outcome between the robust and the original Unbi-

ased LambdaMART still depends on the value of the regularisation

parameter for larger values of the truncation position and Unbiased

LambdaMART needs to be regularised appropriately to outperform

the robust version (26).

7 CONCLUSION
We advanced the theory of pairwise unbiased learning-to-rank by

developing a general debiasing approach based on aminimalistic set

of assumptions.We showed how our general framework can be used

to construct unbiased pairwise loss functions and, consequently,

unbiased learning-to-rank algorithms for different types of user

behaviour.We further implemented our approach as a simplified but

robust version of the Unbiased LambdaMART. Our experimental

results show that this version performs better than the original

algorithm when the examination of different items in the layout

occurs in a dependent fashion.

One of the insights following from the theory developed in this

paper is that in the presence of position bias, a learning-to-rank

procedure can benefit from accounting not only for pairs with

different target labels but also for pairs with the same (non-zero)

target label. In the context of LambdaMART, this motivates future

research aiming at adapting the lambda-trick so that it does not

eliminate the contribution of such pairs to the trained model.

Another interesting direction for future research is to combine

our approach with variance reduction techniques [22, 24].

ACKNOWLEDGMENTS
The authors would like to thank Dr. Christian Bracher from Zalando

Research and Dr. Zeno Gantner for reading the draft of the paper

and giving helpful feedback.

REFERENCES
[1] Aman Agarwal, Kenta Takatsu, Ivan Zaitsev, and Thorsten Joachims. 2019. A

General Framework for Counterfactual Learning-to-Rank. In Proceedings of the
42nd International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval (Paris, France) (SIGIR’19). Association for Computing Machinery,

New York, NY, USA, 5–14. https://doi.org/10.1145/3331184.3331202

[2] Aman Agarwal, Ivan Zaitsev, Xuanhui Wang, Cheng Li, Marc Najork, and

Thorsten Joachims. 2019. Estimating Position Bias without Intrusive Interven-

tions. In Proceedings of the Twelfth ACM International Conference on Web Search
and Data Mining (Melbourne VIC, Australia) (WSDM ’19). Association for Com-

putingMachinery, New York, NY, USA, 474–482. https://doi.org/10.1145/3289600.

3291017

[3] Qingyao Ai, Keping Bi, Cheng Luo, Jiafeng Guo, and W. Bruce Croft. 2018. Unbi-

ased Learning to Rank with Unbiased Propensity Estimation. In The 41st Interna-
tional ACM SIGIR Conference on Research; Development in Information Retrieval

https://doi.org/10.1145/3331184.3331202
https://doi.org/10.1145/3289600.3291017
https://doi.org/10.1145/3289600.3291017

A General Framework for Pairwise Unbiased Learning to Rank ICTIR ’22, July 11–12, 2022, Madrid, Spain

Table 2: Evaluation Results for the Case of Continuous Examination
(see Section 6.4 for details)

Trunc. pos. Method NDCG@1 NDCG@3 NDCG@5 NDCG@10 MAP

10

Unbiased LambdaMART (no regularisation) 0.684 0.680 0.702 0.752 0.880

LambdaMART (click data) -6.71% -5.11% -4.40% -3.28% -0.72%
Unbiased LambdaMART (𝐿1-regularisation) +2.12% +2.15% +1.51% +1.21% +0.16%

Unbiased LambdaMART (𝐿2-regularisation) +1.64% +1.86% +1.54% +1.12% -0.03%

Robust Unbiased LambdaMART +1.01% +1.75% +1.38% +0.96% -0.20%

LambdaMART (labelled data) +3.93% +4.41% +3.65% +2.82% +0.33%

20

Unbiased LambdaMART (no regularisation) 0.642 0.651 0.678 0.732 0.875

LambdaMART (click data) -3.12% -2.79% -2.27% -1.58% -0.29%
Unbiased LambdaMART (𝐿1-regularisation) +6.45% +4.74% +3.87% +2.88% +0.65%
Unbiased LambdaMART (𝐿2-regularisation) +7.63% +5.78% +4.66% +3.41% +0.72%
Robust Unbiased LambdaMART +8.69% +6.88% +5.52% +4.09% +0.74%
LambdaMART (labelled data) +11.24% +9.69% +8.20% +6.24% +1.13%

30

Unbiased LambdaMART (no regularisation) 0.613 0.629 0.660 0.718 0.870

LambdaMART (click data) +0.27% -0.16% -0.21% -0.06% +0.15%

Unbiased LambdaMART (𝐿1-regularisation) +9.13% +6.40% +5.00% +3.71% +0.97%
Unbiased LambdaMART (𝐿2-regularisation) +11.46% +8.18% +6.50% +4.67% +1.23%
Robust Unbiased LambdaMART +13.02% +10.11% +7.94% +5.98% +1.26%
LambdaMART (labelled data) +17.04% +14.03% +11.61% +8.66% +1.84%

Table 3: Evaluation Results for the Case of Independent Examination
(see Section 6.4 for details)

Trunc. pos. Method NDCG@1 NDCG@3 NDCG@5 NDCG@10 MAP

10

Unbiased LambdaMART (no regularisation) 0.696 0.693 0.714 0.762 0.882

LambdaMART (click data) -7.24% -5.88% -5.10% -3.99% -0.85%
Unbiased LambdaMART (𝐿1-regularisation) +0.03% +0.61% +0.34% +0.16% -0.28%
Unbiased LambdaMART (𝐿2-regularisation) -0.17% +0.44% +0.08% -0.08% -0.40%
Robust Unbiased LambdaMART -1.37% -0.57% -0.59% -0.57% -0.76%
LambdaMART (labelled data) +2.21% +2.45% +1.99% +1.46% +0.12%

20

Unbiased LambdaMART (no regularisation) 0.654 0.663 0.688 0.740 0.877

LambdaMART (click data) -2.97% -3.01% -2.44% -1.75% -0.30%
Unbiased LambdaMART (𝐿1-regularisation) +6.45% +4.80% +4.12% +2.98% +0.48%
Unbiased LambdaMART (𝐿2-regularisation) +6.65% +5.17% +4.40% +3.21% +0.43%
Robust Unbiased LambdaMART +5.64% +4.93% +3.96% +2.90% +0.01%

LambdaMART (labelled data) +9.09% +7.57% +6.54% +4.98% +0.89%

30

Unbiased LambdaMART (no regularisation) 0.624 0.642 0.670 0.726 0.872

LambdaMART (click data) +1.05% -0.30% -0.30% -0.14% +0.02%

Unbiased LambdaMART (𝐿1-regularisation) +10.60% +7.43% +6.18% +4.65% +1.03%
Unbiased LambdaMART (𝐿2-regularisation) +12.11% +8.82% +7.41% +5.48% +1.05%
Robust Unbiased LambdaMART +11.71% +8.77% +7.10% +5.19% +0.66%
LambdaMART (labelled data) +14.97% +11.75% +9.93% +7.42% +1.56%

(Ann Arbor, MI, USA) (SIGIR ’18). Association for Computing Machinery, New

York, NY, USA, 385–394. https://doi.org/10.1145/3209978.3209986

[4] Qingyao Ai, Tao Yang, HuazhengWang, and Jiaxin Mao. 2021. Unbiased Learning

to Rank: Online or Offline? ACM Trans. Inf. Syst. 39, 2, Article 21 (feb 2021),

29 pages. https://doi.org/10.1145/3439861

[5] Christopher J. C. Burges. 2010. From RankNet to LambdaRank to LambdaMART:
An Overview. Technical Report. Microsoft Research. http://research.microsoft.

com/en-us/um/people/cburges/tech_reports/MSR-TR-2010-82.pdf

[6] Olivier Chapelle and Yi Chang. 2010. Yahoo! Learning to Rank Challenge

Overview. In Proceedings of the 2010 International Conference on Yahoo! Learning
to Rank Challenge - Volume 14 (Haifa, Israel) (YLRC’10). JMLR.org, 1–24.

[7] Jiawei Chen, Hande Dong, XiangWang, Fuli Feng, MengWang, and Xiangnan He.

2020. Bias and Debias in Recommender System: A Survey and Future Directions.

ArXiv abs/2010.03240 (2020).

[8] Aleksandr Chuklin, Ilya Markov, and M. de Rijke. 2015. Click Models for Web

Search. In Click Models for Web Search.
[9] Zhichong Fang, Aman Agarwal, and Thorsten Joachims. 2018. Interven-

tion Harvesting for Context-Dependent Examination-Bias Estimation. CoRR
abs/1811.01802 (2018). arXiv:1811.01802 http://arxiv.org/abs/1811.01802

[10] Ruocheng Guo, Xiaoting Zhao, Adam Henderson, Liangjie Hong, and Huan

Liu. 2020. Debiasing Grid-Based Product Search in E-Commerce. Association for

Computing Machinery, New York, NY, USA, 2852–2860. https://doi.org/10.1145/

3394486.3403336

https://doi.org/10.1145/3209978.3209986
https://doi.org/10.1145/3439861
http://research.microsoft.com/en-us/um/people/cburges/tech_reports/MSR-TR-2010-82.pdf
http://research.microsoft.com/en-us/um/people/cburges/tech_reports/MSR-TR-2010-82.pdf
http://arxiv.org/abs/1811.01802
https://doi.org/10.1145/3394486.3403336
https://doi.org/10.1145/3394486.3403336

ICTIR ’22, July 11–12, 2022, Madrid, Spain Alexey Kurennoy et al.

[11] Ziniu Hu, Yang Wang, Qu Peng, and Hang Li. 2019. Unbiased LambdaMART: An

unbiased pairwise learning-to-rank algorithm. In TheWorld Wide Web Conference.
2830–2836.

[12] Thorsten Joachims, Laura Granka, Bing Pan, Helene Hembrooke, and Geri Gay.

2017. Accurately Interpreting Clickthrough Data as Implicit Feedback. SIGIR
Forum 51, 1 (aug 2017), 4–11. https://doi.org/10.1145/3130332.3130334

[13] Thorsten Joachims, Adith Swaminathan, and Tobias Schnabel. 2017. Unbiased

Learning-to-Rank with Biased Feedback. In Proceedings of the Tenth ACM Interna-
tional Conference on Web Search and Data Mining (Cambridge, United Kingdom)

(WSDM ’17). Association for Computing Machinery, New York, NY, USA, 781–789.

https://doi.org/10.1145/3018661.3018699

[14] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,

Qiwei Ye, and Tie-Yan Liu. 2017. LightGBM: A Highly Efficient Gradient Boost-

ing Decision Tree. In Proceedings of the 31st International Conference on Neural
Information Processing Systems (Long Beach, California, USA) (NIPS’17). Curran
Associates Inc., Red Hook, NY, USA, 3149–3157.

[15] Haruka Kiyohara and Yuta Saito. 2021. A Collection of Research and Review

Papers on Offline Reinforcement Learning and Off-Policy Evaluation. https:

//github.com/hanjuku-kaso/awesome-offline-rl

[16] Haruka Kiyohara, Yuta Saito, Tatsuya Matsuhiro, Yusuke Narita, Nobuyuki

Shimizu, and Yasuo Yamamoto. 2022. Doubly Robust Off-Policy Evaluation

for Ranking Policies under the Cascade Behavior Model. In Proceedings of the
Fifteenth ACM International Conference on Web Search and Data Mining (Virtual

Event, AZ, USA) (WSDM ’22). Association for Computing Machinery, New York,

NY, USA, 487–497. https://doi.org/10.1145/3488560.3498380

[17] Shuai Li, Yasin Abbasi-Yadkori, Branislav Kveton, S. Muthukrishnan, Vishwa

Vinay, and Zheng Wen. 2018. Offline Evaluation of Ranking Policies with Click

Models. In Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (London, United Kingdom) (KDD ’18).
Association for Computing Machinery, New York, NY, USA, 1685–1694. https:

//doi.org/10.1145/3219819.3220028

[18] Harrie Oosterhuis and Maarten de Rijke. 2018. Differentiable Unbiased Online

Learning to Rank. In Proceedings of the 27th ACM International Conference on
Information and Knowledge Management (Torino, Italy) (CIKM ’18). Association
for Computing Machinery, New York, NY, USA, 1293–1302. https://doi.org/10.

1145/3269206.3271686

[19] Harrie Oosterhuis and Maarten de Rijke. 2021. Unifying Online and Coun-

terfactual Learning to Rank: A Novel Counterfactual Estimator That Effec-

tively Utilizes Online Interventions. In Proceedings of the 14th ACM Interna-
tional Conference on Web Search and Data Mining (Virtual Event, Israel) (WSDM

’21). Association for Computing Machinery, New York, NY, USA, 463–471.

https://doi.org/10.1145/3437963.3441794

[20] Yuta Saito. 2020. Unbiased Pairwise Learning from Biased Implicit Feedback.

In Proceedings of the 2020 ACM SIGIR on International Conference on Theory
of Information Retrieval (Virtual Event, Norway) (ICTIR ’20). Association for

Computing Machinery, New York, NY, USA, 5–12. https://doi.org/10.1145/

3409256.3409812

[21] Yuta Saito, Suguru Yaginuma, Yuta Nishino, Hayato Sakata, and Kazuhide Nakata.

2020. Unbiased Recommender Learning from Missing-Not-At-Random Implicit

Feedback. In Proceedings of the 13th International Conference on Web Search and
Data Mining. 501–509.

[22] Adith Swaminathan and Thorsten Joachims. 2015. Batch Learning from Logged

Bandit Feedback through Counterfactual Risk Minimization. Journal of Ma-
chine Learning Research 16, 52 (2015), 1731–1755. http://jmlr.org/papers/v16/

swaminathan15a.html

[23] Adith Swaminathan and Thorsten Joachims. 2015. Counterfactual Risk Min-

imization: Learning from Logged Bandit Feedback. In Proceedings of the 32nd
International Conference on International Conference onMachine Learning - Volume
37 (Lille, France) (ICML’15). JMLR.org, 814–823.

[24] Adith Swaminathan and Thorsten Joachims. 2015. The Self-Normalized Estima-

tor for Counterfactual Learning. In Advances in Neural Information Processing
Systems, C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett (Eds.),

Vol. 28. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2015/file/

39027dfad5138c9ca0c474d71db915c3-Paper.pdf

[25] Xuanhui Wang, Michael Bendersky, Donald Metzler, and Marc Najork. 2016.

Learning to Rank with Selection Bias in Personal Search. In Proceedings of the 39th
International ACM SIGIR Conference on Research and Development in Information
Retrieval (Pisa, Italy) (SIGIR ’16). Association for Computing Machinery, New

York, NY, USA, 115–124. https://doi.org/10.1145/2911451.2911537

[26] Xuanhui Wang, Nadav Golbandi, Michael Bendersky, Donald Metzler, and Marc

Najork. 2018. Position Bias Estimation for Unbiased Learning to Rank in Personal

Search. In Proceedings of the Eleventh ACM International Conference on Web
Search and Data Mining (Marina Del Rey, CA, USA) (WSDM ’18). Association for

Computing Machinery, New York, NY, USA, 610–618. https://doi.org/10.1145/

3159652.3159732

[27] Xiaohui Xie, Jiaxin Mao, Yiqun Liu, Maarten de Rijke, Yunqiu Shao, Zixin Ye, Min

Zhang, and Shaoping Ma. 2019. Grid-Based Evaluation Metrics for Web Image

Search. In The World Wide Web Conference (San Francisco, CA, USA) (WWW
’19). Association for Computing Machinery, New York, NY, USA, 2103–2114.

https://doi.org/10.1145/3308558.3313514

https://doi.org/10.1145/3130332.3130334
https://doi.org/10.1145/3018661.3018699
https://github.com/hanjuku-kaso/awesome-offline-rl
https://github.com/hanjuku-kaso/awesome-offline-rl
https://doi.org/10.1145/3488560.3498380
https://doi.org/10.1145/3219819.3220028
https://doi.org/10.1145/3219819.3220028
https://doi.org/10.1145/3269206.3271686
https://doi.org/10.1145/3269206.3271686
https://doi.org/10.1145/3437963.3441794
https://doi.org/10.1145/3409256.3409812
https://doi.org/10.1145/3409256.3409812
http://jmlr.org/papers/v16/swaminathan15a.html
http://jmlr.org/papers/v16/swaminathan15a.html
https://proceedings.neurips.cc/paper/2015/file/39027dfad5138c9ca0c474d71db915c3-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/39027dfad5138c9ca0c474d71db915c3-Paper.pdf
https://doi.org/10.1145/2911451.2911537
https://doi.org/10.1145/3159652.3159732
https://doi.org/10.1145/3159652.3159732
https://doi.org/10.1145/3308558.3313514

	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Framework
	3.1 Assumptions
	3.2 Unbiased Pairwise Loss
	3.3 Estimation of Examination Probabilities

	4 Examples
	5 Robust Unbiased LambdaMART
	6 Experimental Setup and Results
	6.1 Click Data Generation
	6.2 Methods under Comparison
	6.3 Evaluation Protocol
	6.4 Experimental Results

	7 Conclusion
	Acknowledgments
	References

