Two-sided Rank Consistent Ordinal Regression for Interpretable
Music Key Recommendation

Yuan Wang
ywang4@scu.edu
Santa Clara University

Hsin-Tai Wu
hwu@docomoinnovations.com
DOCOMO Innovations, Inc.
USA

ABSTRACT

Model interpretability has attracted increasing attention in the IR
community since it is important to ensure that end-users (decision-
makers) correctly understand and consequently trust the function-
ality of the models. On the other hand, ordinal regression has been
widely used in many ranking and prediction tasks, but it could
not guarantee the rank consistent predictions for the output labels,
which makes the predicted results hard to explain. Take the music
key recommendation in karaoke as an example where a user could
select a key ranging from -7 to +7 so that the song could meet the
user’s vocal competence for better performance. If the best key for
a user to sing a song is -3, the keys smaller than -3 should be ranked
in decreasing order. Similarly, the keys on the positive side should
also be ranked in the decreasing order. To address this challenge,
we propose a novel Two-sided Rank Consistent Ordinal Regression
model. We show that the model is not only able to predict the key
for the target song given the user’s singing history, but it also has
the theoretical guarantees for the two-sided rank-monotonicity. We
train the model with a history encoder using the recurrent units
and a key decoder using the Transformer. The experimental results
on the real-world karaoke dataset demonstrate the effectiveness of
our proposed model.

CCS CONCEPTS

« Information systems — Music retrieval.

KEYWORDS

Ordinal regression, Model interpretability, Music information re-
trieval

ACM Reference Format:

Yuan Wang, Shigeki Tanaka, Keita Yokoyama, Hsin-Tai Wu, and Yi Fang.
2022. Two-sided Rank Consistent Ordinal Regression for Interpretable Music
Key Recommendation. In Proceedings of the 2022 ACM SIGIR International

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICTIR °22, July 11-12, 2022, Madrid, Spain

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9412-3/22/07...$15.00
https://doi.org/10.1145/3539813.3545147

Shigeki Tanaka
shigeki.tanaka.da@nttdocomo.com
NTT DOCOMO, INC.

USA Japan

Keita Yokoyama
keita.yokoyama.sh@nttdocomo.com
NTT DOCOMO, INC.

Japan

Yi Fang
yfang@scu.edu
Santa Clara University
USA

Conference on the Theory of Information Retrieval (ICTIR °22), July 11-12,
2022, Madrid, Spain. ACM, New York, NY, USA, 9 pages. https://doi.org/10.
1145/3539813.3545147

1 INTRODUCTION

Interpretable IR and machine learning attempt to develop models
that generate not only high-quality predictions but also intuitive
explanations. In this way, it helps to improve the transparency, per-
suasiveness, trustworthiness, and user satisfaction of the systems. It
also facilitates system designers to diagnose, debug, and refine the
algorithm. On the other hand, ordinal regression is an important
technique in the IR and machine learning communities as it can
take the ordering information between the target labels into consid-
eration. Ordinal regression has been widely used in many ranking
and prediction tasks [5, 11, 38]. The ordinal task is usually trans-
formed into multiple binary classification tasks using the binary
cross-entropy loss. However, these approaches could not guarantee
the monotonicity among the predicted labels, which makes them
hard to explain. Intuitively, the ordinal model should retain the
ordering information in the predicted outputs such that the pre-
dicted probability for each ordinal label should be in an increasing
or decreasing order. For example, in the age estimation task, if the
ground truth label is 60, the labels such as 50, 40, and 30 should
have monotonically decreasing probabilities. On top of the afore-
mentioned rank consistent output, the two-sided rank consistent
output is a more challenging problem. In some cases, the ordering
information among the ordinal labels is not only increasing and
decreasing, but the ordering could be increasing then decreasing,
which we called the two-sided monotonicity. Under this setting,
the desired predicted probability from the model should also be
two-sided monotonic.

One real-world application of the two-sided monotonicity is
the music key recommendation in karaoke. Karaoke machines are
becoming an increasingly popular choice for many people’s daily
entertainment. After the user sings a song, the machine’s rating
system provides a real-time and automatic evaluation of the user’s
singing record. Besides dedicated practicing, one of the simple
techniques to deliver better performance is to select a suitable key
so that the song could meet the users’ vocal competence. In the
karaoke system, 15 keys are ranging from -7 to 7, with the default
key being 0. In music, a key is a scale around which a piece of
music revolves, and each key has the seven notes which make up

https://doi.org/10.1145/3539813.3545147
https://doi.org/10.1145/3539813.3545147
https://doi.org/10.1145/3539813.3545147

ICTIR °22, July 11-12, 2022, Madrid, Spain

Probability
A Two-sided Rank consistency
| Rank Inconsistency
0.5 f=-=mm=mmmmmmmaon I R (N EEE LT L TR e
H_}
D D D D D P D D D
%t B K K % A % % %
s v e Ty Ty Ty Ty Ty Ty
© ~ ~ ~ ~ Ky Ky 2 Y

v e © 2 9 2 9 ¢ %

Figure 1: Illustration of the ideal probability of the model out-
put. The two-sided rank consistency should be maintained
in the model output for better interpretability where the
probabilities increase and decrease consistently as the value
of key increases and decreases.

the song’s melody. For example, in the karaoke machine, using the
positive keys will increase the pitch value and vice versa. As each
individual has different vocal capabilities, using the default key
may not be the best choice. The default key is specially chosen to
fit everyone’s vocal competence, but it is not the best choice for the
user to get the highest score. The user needs to choose a suitable
key to sing, which could lead to better performance. However, for
most of the users who are not an expert with musical knowledge,
they are not aware of the benefit of changing keys when the default
key is not fitted. Thus, helping these users decide the best key for
the target song becomes an important task.

In practice, the user has to sing at least one song before we could
help him or her choose a key for the next target song. That is,
without any historical records, it is impossible to recommend a key
for a user to sing. Moreover, since everyone has a unique vocal
key range, a personalized recommendation system is required. In
collaboration with a Japanese karaoke company, we are provided
the user’s singing records and the vocal track of songs in the Midi
format. Midi format is commonly used when composing music, and
there is a lot of music dataset in this format such as The Lakh MIDI
dataset [28]. In this format, the note’s notation, pitch, velocity, and
duration are all recorded.

In this key recommendation task, to provide reasonable and in-
terpretable results, the relative ordering information between keys
needs to be captured, which means the task should be formulated
as the ordinal problem. For example, if the best key for a user to
sing a song is -3, the keys smaller than -3 should be ranked in de-
creasing order. Also, the keys in the range 0 to +7 should be ranked
in the decreasing order as these keys have increasing key values.
As common sense, the song becomes more difficult to sing as the
key is closer to -7 or +7 because the resulting song requires the
users to have a very high or low vocal pitch range. This two-sided

Yuan Wang et al.

rank-monotonicity needs to be guaranteed because it is contra-
dictory if the best key is -3 and the second-best key is +5. The
desired output should be in the consistent two-sided rank. Figure 1
illustrates inconsistent (in red) and consistent (in blue) predictions
respectively. If we use the traditional classification loss functions
such as multi-category cross-entropy, we could not consider the
rank-monotonicity between keys. Although the neural network-
based ordinal regression [26] takes the ordering information into
account, it suffers from the inconsistency among the label rankings.
To tackle this problem, we propose the two-sided Rank Consistent
Ordinal Regression (TRCOR) model for the key recommendation
task in this paper. To the best of our knowledge, this paper presents
the first study of the two-sided rank-monotonicity among the class
labels with ordering information. Our main contribution can be
summarized as follows:

e We propose a novel Two-sided Rank Consistent Ordinal
Regression (TRCOR) model with theoretical guarantees for
two-sided rank-monotonicity.

e We implement the music key recommendation model which
can analyze the user’s history singing records and accurately
predict the target key with interpretable output.

e Experiments on the real-world karaoke dataset show the
effectiveness of the proposed model.

2 RELATED WORK
2.1 Model Interpretability

Interpretability in machine learning has been extensively investi-
gated in classical machine learning. Deep learning models have
largely improved performance, but they tend to be opaque and less
interpretable. As a result, the interpretability of these complex mod-
els has been studied in various domains such as image classification
[9], sequence to sequence modeling [3], and named entity recog-
nition [2], to better understand decisions made by the models. In
IR, there has been relatively limited work on model interpretability
[37]. A recent showed how a model introspective method meant for
computer vision can be applied to interpreting the relevance score
of a single query document pair [12]. The explainability of recom-
mendation systems has also received increasing attention in recent
years. An overview of the field can be found in [44]. To the best of
our knowledge, no prior work has addressed the interpretability of
music key recommendation.

2.2 Ordinal Regression

Ordinal regression is widely used in the classification problem
where the class labels have relative ordering information. In the
machine learning field, the ordinal regression problem was firstly re-
formatted to utilize multiple binary classification tasks [23]. There
are also other works using perceptrons [8, 36] and support vec-
tor machines [7, 18, 29, 35]. Recently, some convolutional neural
networks were proposed on age classification [22, 32], as the age
estimation problem perfectly fits in the setting of ordinal regression.
Also, a neural network-based framework was proposed to reduce
the ordinal regression to the binary classification problem, which
was also applied to the age classification problem by [26]. The pro-
posed Ordinal Regression CNN (OR-CNN) transforms the K ranks

Two-sided Rank Consistent Ordinal Regression for Interpretable Music Key Recommendation

ICTIR 22, July 11-12, 2022, Madrid, Spain

Target Song g

, Transformer
§ Encoder

Key Decoder

- \"-------""X\-/-erage \

1

Ly > L joint

History Encoder

Recurrent Cells

Recurrent Cells

Recurrent Cells

Figure 2: Architecture of the proposed TRCOR model. Here L; and L, denote the two rank consistent loss functions, which
optimize the output probabilities for key from the upper range (0 to +7) and the lower range (-7 to 0) respectively. The rank
consistent loss functions guarantee a consistent decreasing output probabilities for each of the key ranges, which lead to a

two-sided rank consistency for all keys.

into K — 1 binary classification problems, and all K — 1 tasks share
the same weights for the layers in the neural networks. However,
the inconsistency between the predicted labels becomes a problem,
which is solved by CORAL framework [6]. The CORAL framework
could guarantee the rank consistency for the ordered labels, but it
could not be used in our task which requires the two-sided rank-
monotonicity. Moreover, for personalized rating prediction, since
the feedback ratings could reflect the users’ intention on the items,
and the ratings are on the ordinal scale, the ordinal regression is
used in the proposed recommendation model [21].

2.3 Karaoke Recommendation

Traditional recommendation system models such as Factorization
Machines [30], BPR [31], and collaborative filtering [33] may not
fit our problem because we are not recommending items such as
movies and songs. In the existing work, some research have been
conducted on music and karaoke song recommendation. In music
recommendation systems, Downie [10] proposed a metadata-based
model which uses textual metadata. Also, models using collabora-
tive filtering techniques are widely used [1, 4, 41]. Recently, as deep
learning becomes popular, T-recsys [13], the hybrid model [42], and
the deep content-based model [39] are proposed to adapt the power
of neural networks. Different from the music recommendation, the
karaoke song recommendation aims to recommend the songs that
would fit the users’ vocal competence instead of their taste pref-
erences. MKLA [15] is a karaoke recommender system that could
compute the matching degree of users and songs using multiple
kernel learning. InfoFuMF [17] used the matrix factorization to
learn the user and song’s latent feature vectors from the singing

records, ratings, user data, and song data. CBNTF [16] proposes
a joint model using negative tensor factorization and a support
vector machine which also learns from the singing recordings. In
[24], the authors design a model to acquire singer profiles from
the vocal range profile which could be used as features for the
recommendation models. However, all models mentioned above
only aim to recommend the song that fits the users’ vocal compe-
tence and ignore that the key is also an important factor during
the recommendation. A recent work [43] addressed a karaoke key
recommendation task, but it did not consider the two-sided rank
monotonicity, which made the results hard to digest for end users.

3 DATA DESCRIPTION

In collaboration with Daiichikosho, one of the largest producers of
karaoke machinery in the world, we are provided the dataset. In
this karaoke dataset, there are the users’ history singing records H
and the notes for songs’ vocal tracks N. There are a total of 602,587
records and 20,914 users. The best key for each song and user is not
given since the users could only know their performance ratings
afterward. It is also rare for a user to sing a song for all 15 keys to
find a suitable key. Here the performance ratings range from 0 to
1, which are calculated by dividing the number of correctly sung
notes by the total number of notes. Thus, we apply a strict rating
threshold of 0.95 so that we consider these records to be the pairs
of users and songs with the best keys. By default, the records with
key 0 have the most cases, so we down-sample the key 0 to make a
balanced dataset.

For each st song in N, ny is a sequence of pairs that contains
the note number and duration. Specifically, the sequence of notes

ICTIR °22, July 11-12, 2022, Madrid, Spain

contains only the notes for the vocal track of the songs. For each
singing record in H for a user, there is the sequence of pairs r;
that contains the note and duration sang by the user. We use i to
denote the ith user from the whole dataset. Also, each user has T
history records where T = |H!|. Note that the duration of the notes
is predetermined by the karaoke machine rating system.

4 PROPOSED MODEL

In this section, we describe our proposed TRCOR model for the
key recommendation. Our method aims to predict the best key for
the user to sing a song based on the history singing records. Our
setting assumes the user has had at least one record. To address
the problem of the two-sided rank-monotonicity, we first propose
a model in the encoder-decoder structure consisting of a history
encoder and a key decoder, and then we use three loss functions
including two rank consistent losses and one binary cross-entropy
(BCE) loss to achieve our goal. Each output probability for the
keys from the upper range (0 to +7) and the keys from the lower
range (-7 to 0) is optimized independently by the rank consistent
loss respectively. For the two rank consistent loss functions, we
adapt the setting from the CORAL [6] framework which could
guarantee consistent decreasing output probabilities. The BCE loss
could determine which range the predicted key belongs to. Since
the BCE loss and the rank consistent losses have a different scale,
we compute the weighted sum of the values from these losses so
that we could optimize them jointly.

Within the TRCOR model, at each time ¢, the user u with history
singing records H’ selects a target song with notes n. We first input
the history singing records H' = {Ho, Hz, ...H7_1} into the history
encoder to get a history vector hr. Then the hr and n; are input
into the key decoder to compute the probability for each keys.

4.1 Preprocessing

Since the original note sequences only contain the discrete value
of notes, we need an informative representation for the songs and
users’ records so that the note, the duration, and the key could all be
encoded together. Inspired by Word2Vec [25] originally proposed
for word representation learning, we combine the notes and dura-
tion information into word strings and then apply the embedding
layer in the model to learn an end-to-end representation for notes.

To combine the notes and duration information, we first deter-
mine a standard minimum time interval and compute the number
of the time interval in each note duration. Then we convert each
note integer into a string by repeating the integer by the number
of intervals. For example, given a tuple {45, 0.005} where 45 is the
note and 0.005 is the note duration, we convert it into the string
’45_45_45_45_45’ if we set the standard time interval to be 0.001.
Thus, each note sequences ng could be converted into words se-
quences wg = {wr, ..., Wi | }. Then using the embedding layer, each
word in the sequence wj = {w, ..., Wy} is encoded as e = ®(w)
where e is the d-dimensional embedding and ® is the embedding
layer. Here the embedding layer is a look-up table which stores
the embedding vector for all words in our note words dictionary.
The vectors in the embedding layer are updated along with other
parameters while we train the model. Thus, the input to the model
could be denoted as x; = {Hé, Hi_l, E;}.

Yuan Wang et al.

4.2 History Encoder

Since users do not provide the vocal ability directly, we need to
analyze their history singing records. Although the singing records
could tell the best pitches they have sung, they could not directly
determine the users’ vocal range. To extract users singing informa-
tion from their past singing, we proposed the history encoder to
learn the vector embeddings from users’ history records. As part
of the key prediction model, the history encoder aims to learn the
user embedding using an online fashion so that we could use it for
key prediction in the next step.

In the history singing records H' of each user, there are the sang
notes r;. As described in Section 4.1, we use an embedding layer
® to compute the vector representations E of the processed notes
from the sang notes r;. As the notes in the song are time-dependent,
the previous note affects the next note. We use the recurrent cells
to analyze the user’s history singing records so that we could learn
a latent vector for their singing capability. Thus we propose to
input E to recurrent cells such as gated recurrent units and use the
output hidden vector as the latent representation for E. Since users
usually have more than one historical record, we take the mean of
the hidden vector, and the result vector is denoted as h.

4.3 Key Decoder

After computing the history vector from users’ history singing
records, we propose the key decoder to predict the target key. Be-
sides the history vector, we need to input the target song, as we
could analyze the song’s notes sequences and recommend the best-
fitted key to the user. The key decoder should consider both the
user’s singing ability and the characteristics of the songs.

Again, the key decoder aims to predict the probabilities of each
key given the user’s history vector h and the target song’s notes
ns. The transformer [40] has been a well-known language model
capable of analyzing word sequences and has been successfully
applied in many natural language understanding domains. Here
we use the transformer encoder, denoted as TE, to combine the
user’s history information with the song information. Specifically,
we first obtain the vector representation E; of the target song using
the same embedding layer ® described in Section 4.1. Then we
concatenate h at each note’s embedding in Eg of the target song as
Z: = {(eo,p), (e1,p)s ..., (€1, p) }, and the input the resulting matrix
Zs to TE.

Next, we split the network into three separate decoders with
independent weights for different losses. Each decoder is a dense
layer and followed by different loss functions as described in Section
5. In detail, the value from the dense layer to the BCE loss ranges
between 1 and 0, and it has a dimension of 1. We then concatenate it
to the input vector to the other two dense layers. During the model
inference, to recommend the key, we first look at the binary label
for range classification, and we will only look at the probabilities
for labels in the range determined by the range label. Specifically,
the range label is determined by which range the key is placed.
Since we treat it as a binary label, the range label 1 means the key is
from the upper range, and the range label 0 means the key is from
the lower range.

Two-sided Rank Consistent Ordinal Regression for Interpretable Music Key Recommendation

4.4 TRCOR Loss Functions

We use two losses to optimize the key prediction tasks for keys in 0
to -7 and keys in 0 to 7 respectively, denoted as L; and Ly. We also
have a range classifier to determine if the target key is in the upper
range (0 to 7) or lower range (0 to -7), where we use the binary
cross-entropy loss Ls.

First, we extend the key labels into binary labels. Given a label
k; of the ith data, we convert it into two sets of binary labels. Since
we have equal number of labels in the upper range and the lower
range, we use m to denote the total number of labels in the each

range. We will have two set of m binary labels, {ki(o), ki(m_l) }
for keys in the upper range and {kl.(o), v kl.(l_m)} for keys in the

lower range, such that ki(m> € {0, 1} indicates whether k; exceeds
rank m. For example, if the key k; is 3, we have a binary labels
kl.(3) =1{1,1,1,1,0,0,0,0}, where ¢t means target label and 3 means
the actual label 3, to input into the L; for keys in the upper range,
and we have another binary labels {1, 0, 0, 0, 0, 0, 0, 0} to input into
L for keys in the lower range. Here m = 8 because we have a fixed
number of keys in both ranges. Since the default key is 0 and we
assume the key should be capable to sing with most people, we set
it to be 1 in both binary labels no matter whether the key is from
the upper range or not. That is, the default key 0 should always has
the greatest probability. Thus, the model could give us a consistent
non-decreasing predicted probability for both sets of binary labels.
In other words, the keys from 0 to -7 will have a non-decreasing
predicted probability, and the keys from 0 to 7 will also have similar
monotonic probabilities.

In details, let W1, W2, and W3 denote the weight parameters of
our model for each three tasks, and by and by denote the indepen-
dent bias units that are added to the final output model to achieve
the non-decreasing rank monotonicity. For the keys from the upper
range (0 to 7), we have the loss function

Ly (WL bl) =
N m-1 V
= 2 2, [ogtatglxi. W) + b))k M

i=1 j=1
+log(1 = algCxi, W1) + ;) (1 = k)]

where g(x;, W) + b; is the output of penultimate layer added with
the independent bias units b, « is the logistic sigmoid function, and
the importance factor set to be 1. For the predicted probability of
each binary label, we have a(g(x;, W1) + b;) for each key in the
range.

Similarly, for the keys from the lower range (0 to -7), we have
the loss function

Ly(W2,b2) =
N m-1

- Z Z [1°g(a(g(x,-,wz) + bj))ki(l_j) @

=1 j=1
+log(1 - a(g(xi, W2) + b)) (1 - k)],

ICTIR 22, July 11-12, 2022, Madrid, Spain

Then for the binary cross entropy loss used for range classifica-
tion, we have

L3(W3) =

N
= > log(a(f (xi, W3))ri 3)
i=1
+log(1 - a(f(xi, W3)))(1—r;),

where r; is the range label for ith data and f is the linear layer.
Then we adapt the way to compute the weighted sum of multiple
loss values from [19] as the follows

Ljoint (W1, W2, W3,bq,bs, 01,09, 03) =

1 1 1
—L1(W1,b1) + —L2(W2,b2) + — L3(W3) (4)
207 20, o3
+log o1 +log oy +log o3,

where o is the variance which could be seen as the weight of each
loss values. The large scale values of o will decrease the contribution
of loss, whereas the small scale value will increase the contribution.
We initialize the log variance with zeros and train our model to
predict the log variance because it is more numerically stable than
regressing the variance.

By minimizing the joint loss Ljoint, the independent bias units b
are always non-increasing such that:

by >by>..> by (5)

for each by and by [6]. Then the predicted probability of each binary
labels from each key range are non-increasing. Since L; (W1, b1)
is for the keys from the upper range (0 to 7), and Ly(W2, by) is for
the keys from the lower range (0 to -7), the predicted probability
will increase from -7 to 0 and then decrease from 0 to 7, which
guarantees the two-sided rank monotonicity.

4.5 Theoretical Guarantee

To prove the rank consistency in L and Ly, we assume (W, b) is
optimal, and we have b, < by41 for certain v where v is a rank. We
claim that replacing b, with by or vice versa would decrease the
objective value L. First, we define the following variables:

Ar={i: kD =k =1y,
Ap={i: kD =k = oy,
As={i: kY = 1,60 = o),
where AjUA2UA3 represents all possible situations for k in each the

keys from upper range and lower range. Then we denote p;(b;) =
a(g(x;, W) +b;) and

6; = log(pi(bj+1)) — log(pi(b;)),
87 =log(1 - pi(bj)) —log(1 = pi(bj+1)).

Since L3 does not have the bias term, the rank consistency guarantee
is not related to it. In loss function Eq. (4), if we replace b; with

ICTIR °22, July 11-12, 2022, Madrid, Spain

Yuan Wang et al.

Model History Encoder | MAE RMSE ACC@! ACC@3 P@1 P@3 R@1 R@3
Random - 41805 5.1003 0.0726 0.2079 0.0678 0.2602 0.0675 0.1990
Ordinal Regression - 24160 3.1565 0.1501 0.4067 0.1027 0.3802 0.0919 0.2621
Two Models Dense 3.5026 4.5369 0.1107 0.2834 0.0449 0.2226 0.0837 0.2333
Two Models BiGRU (Mean) 3.1556 4.1225 0.1265 03192 0.0929 0.2627 0.0853 0.2296
Ordinal Model Dense 15764 25021 03018 0.6329 0.2170 0.5990 0.2134 0.4989
Ordinal Model BiGRU (Dense) || 2.1095 3.0137 0.2360 0.4930 0.1744 0.4865 0.1522 0.3612
Ordinal Model BiGRU (Mean) 2.2908 3.2074 0.2061 0.4595 0.1501 0.3959 0.1526 0.3796
Ordinal Model GRU 2.1989 2.9955 0.2120 04576 0.1818 0.4002 0.1327 0.3033
TRCOR Dense 1.7484 26500 0.2377 05910 0.1801 0.5458 0.1614 0.4230
TRCOR BiGRU (Dense) || 2.3840 33133 0.1779 0.4455 0.1189 0.4021 0.1302 0.3297
TRCOR BiGRU (Mean) 2.4408 33985 0.1725 04417 0.1232 04101 0.1370 0.3432
TRCOR GRU 2.1978 29976 0.1832 0.4596 0.1141 0.4092 0.1105 0.2962

Table 1: Evaluation Results. The results indicate that under the two-sided rank-monotonicity constraint, our model has a better
performance than the Two Models approach. Our model also has a very competitive performance against the Ordinal Model;
whereas the Ordinal Model could not guarantee the two-sided monotonicity constraint.

bj+1, the change of loss is denoted as z() and is given as
21(Ljoint) = z1(L1) + z1(L2)

:[‘25”251{‘2‘5"]

€A i€A, i€A;3
- T2l
ieA; i€Ay i€As

Then if we replace bj+; by bj, the change of loss is given as
z2(Ljoint) = z2(L1) + z2(L2)

[300 2ol

i€A; i€A, i€A;3
SHEEHEEMT
i€A; i€Ay i€As

Now if we add z1(Ljoins) and z2(Ljoint), we have

z1(Ljoint) + z2(Ljoint) = =2 Z (Bn+61).
neAs
Since the change of b does not affect the loss function Eq. (3), and
the right hand side of the equation is less than 0, we conclude that
the claim is justified. Thus, the optimal solution would guarantee
the decreasing rank monotonicity for the predicted probabilities
for each of the key ranges in 0 to 7 and 0 to -7.

5 EXPERIMENTS

In this section, we will describe the experimental setups. In the
dataset, users are having a different number of history records,
so to maximize the training efficiency and make use of the batch
processing, we set the length of history T to be the constant number
5. Then, we remove the users with less than 5 history records, and
for other users, we randomly sampled T records to be the input to
the model. For the training and testing data split, we use 70% of the
dataset for training and 30% for testing.

5.1 Baseline Methods

First, we investigate the performance of the proposed TRCOR model
against several baseline models. Due to the constraint specified in

the previous sections, few previous works could be found, so we
develop several baseline models for comparison. The details of the
baseline models are as the following:

e Random: Among the 15 keys, we randomly select keys for
the target users and songs.

e Ordinal Regression: We build a simple ordinal regression
model based on the implementation described in [27]. To
have a strong baseline model with a simple structure, we
simplify the input data. Instead of using the prepossess-
ing method described in Section 4.1, we concatenate the
note number sequences in the history records with the note
number sequences of the target song without using any
Word2Vec model and encoding duration information. Then
we input the concatenated note number vectors into the
ordinal regression model and evaluate the model on key
prediction. Note that the model does not perfectly fit our
constraint as it could not guarantee the desired two-sided
monotonicity.

e Ordinal Model: We also implement several other baseline
models based on the OR-CNN [26]. Here we use the same
model architecture described in Section 4, but we replace
the CORAL loss and multitask learning part with the loss
function from OR-CNN. Again, this model also could not
guarantee the desired two-sided monotonicity.

e Two Models: To present a fair comparison, we develop
a baseline model that could guarantee the desired rank-
monotonicity, named the Two-Model approach. We first train
two independent models using the CORAL loss from [6]. For
both models, we use the same key recommendation model
structure as described in Section 4. For one model, we train it
using the data with only keys 0 to 7, and for another model,
we train it using the data with only keys 0 to -7. Under this
setting, each model could guarantee the rank-monotonicity
such that there are decreasing predicted probabilities for
keys from 0 to 7 and 0 to -7. When we evaluate this model,
we have each model predict a key using the same input data,

Two-sided Rank Consistent Ordinal Regression for Interpretable Music Key Recommendation

Model

Hist Encoder

ICTIR 22, July 11-12, 2022, Madrid, Spain

H Average Number of Inconsistencies

Ordinal Regression - 5.017
Two Models Dense 0
Two Models BiGRU (Mean) || 0
Ordinal Model Dense 4.238
Ordinal Model BiGRU (Dense) || 4.066
Ordinal Model BiGRU (Mean) || 4.518
Ordinal Model GRU 4.105
TRCOR Dense 0
TRCOR BiGRU (Dense) || 0
TRCOR BiGRU (Mean) || 0
TRCOR GRU 0

Table 2: Evaluation results for inconsistencies occurred in the predictions. We compute the average numbers of rank inconsis-
tencies of the models’ output. We compare the numbers among all baseline models and TRCOR model, and we could conclude
that TRCOR model could guarantee the two-sided rank consistency.

and we pick the key with a higher probability to be the final
prediction.

5.2 Settings

For the history encoder in our key recommendation model, we
implement four different encoders and compare the performance
against each other. Note that the key decoders are the same for
other models such as the Ordinal Model and Two Models for our
baseline models.

e Dense: The Dense history encoder has two dense layers. Af-
ter taking the mean of note embedding for the target song,
we input the resulting vector to the dense layers. The first
dense layer has a dimension of (d, 64) where d is the dimen-
sion of the embedding layer, and it is followed by the Relu
activation function. The second dense layer has a dimension
of (64, 32), where 32 is the dimension of the history vector h.

e GRU: The GRU history encoder has a GRU [14] layer with
the input vector size to be d and the hidden vector size to be
32 which is the same as the dimension of the history vector.
The output hidden vector from GRU is used to be the history
vector h

e BiGRU (Mean): The BiGRU (Mean) history encoder has a

BiGRU [34] layer. The input vector size is d and the hidden

vector size is 32. Since the BiGRU layer is bidirectional in

terms of computing the hidden vectors, there are two hidden
vectors. Here we use the mean of two hidden vectors to be

the history vector h.

BiGRU (Dense): The BiGRU (Dense) history encoder also

has a BiGRU layer, and it has the same setting as the BIGRU

(Mean) for the input vector and hidden vector size. Here

we handle the two hidden vectors output from the BiGRU

layer in a different way. We concatenate two hidden vectors
together, and input the resulting vector to a dense layer,
followed by the Relu activation function. The output size of
the dense layer is 32, and the vector output from the dense
layer is seen as the history vector h.

For all neural network-based models mentioned above, we opti-
mize the loss functions with the Adam optimizer [20]. The other

parameters include: batch size = 256, learning rate = 0.001, epochs
= 20. For the transformer encoder, we set the dimension of the feed-
forward network to be 200, the number of layers to be 2, the number
of heads to be 2, and the dropout value to be 0.2. For evaluation
metrics, we use the mean absolute error (MAE), root mean square
error (RMSE), accuracy (ACC), accuracy@3 (ACC@3), precision (P),
precision@3 (P@3), recall (R), and recall@3 (R@3).

Due to the ordering information among the keys, the ACC@3,
P@3, and R@3 are computed by comparing the ground truth key
with the predicted key, predicted key + 1, and predicted key - 1.

5.3 Results and Analysis

5.3.1 Baseline Comparison. Table 1 presents the results of the base-
line models against our proposed model. The results indicate that
under the two-sided rank-monotonicity constraint, our model has
a better performance than the Two Model approach. Our model
also has a very competitive performance against the ordinal model;
whereas the ordinal model could not guarantee the two-sided mono-
tonicity constraint. To demonstrate the effectiveness of our pro-
posed history encoder and key decoder, we compare the perfor-
mance among the Ordinal Regression, the Ordinal Model, and TR-
COR. For all variants of the history encoder, the neural network-
based models have the better performance, which indicates that
the history encoder could successfully extract the embedding rep-
resentation from users’ singing history and that the key decoder
could accurately predict the key based on the history vector and the
song embedding. Our model could successfully analyze the user’s
singing record the predict the best key for him or her to sing.

In Figure 3, we did a qualitative study on the output probabilities
for keys. As shown in the graph, the TRCOR model successfully
guarantees the two-sided monotonicity as desired such that the
probabilities for keys from -7 to 0 are increasing and the probabil-
ities for keys from 0 to 7 are decreasing. In contrast, the Ordinal
model could not produce the desired probabilities for keys.

5.3.2 History Encoder. We implement four different history en-
coders which include Dense, GRU, BiGRU (Mean), and BiGRU
(Dense). We expect the history encoder with recurrent cells to
have a better performance, as the BIGRU and GRU should capture

ICTIR °22, July 11-12, 2022, Madrid, Spain

Ground Truth: 1
TRCOR: 1, Ordinal Model: 2

Yuan Wang et al.

Ground Truth: 1
TRCOR: 1, Ordinal Model: 3

1
08 ——-TRCOR
056 Ordinal Model
0.4
0.2
0
-7 6 -5 4 -3 -2 -1 0 1 2 3 4 6 7

(@)

1
08 ——TRCOR
056 Ordinal Model
0.4
0.2

0

-7 6 5 -4 -3 -2 -1 0 1 2 3 6 7
(b)

Figure 3: Examples of the predicted probabilities for each binary classifier tasks. Comparing between the TRCOR and Ordinal
model, we can observe that the predicted probabilities of the keys from the lower range and upper range are increasing and
decreasing for TRCOR model, whereas the predicted probabilities of Ordinal model is inconsistent.

Embedding Size || MAE RMSE ACC@1 ACC@3 P@1 P@3 R@1 R@3

64 17153 2.6067 0.2473 05979 0.1770 05369 0.1638 0.4257
128 17290 2.5841 0.2410 0.5912 0.1700 0.5366 0.1498 0.4066
256 17484 2.6500 0.2377 05910 0.1801 05458 0.1614 0.4230
512 23568 3.2078 0.1672 0.4270 0.1159 0.3650 0.1167 0.3162

Table 3: Evaluation Results for different embedding size. The results are obtained on TRCOR (Dense) model with different
embedding size for the embedding layers. Among different metrics, the embedding size of 256 shows the best results, and we

use embedding size of 256 for other models’ experiments.

the time dependency information among the notes in the sequence.
However, as the results in Table 1 show, the Dense history encoder
outperforms other encoders and has significantly better perfor-
mance in both Ordinal Model and TRCOR. Thus, we could claim
that the time dependency within the sequence of the notes is not
strong. A reason could be that the previous sang notes would not
affect the future notes that the user would sing, as the competence
of the note would majorly depend on the pitch range and singing
ability of the user. Thus, using the simple Dense encoder is effective.

5.3.3 Two-sided rank consistency analysis. As described in Section
4, the TRCOR model guarantees the two-sided rank consistency.
In this section, we analyze the rank inconsistency for the Ordinal
Model. In Figure 3, we show four examples of the predicted prob-
abilities output from TRCOR and the Ordinal Model. In Table 2,
we summarize the average number of rank inconsistencies for the
TRCOR, Ordinal Model, and Two Model. Since TRCOR and Two
models both implemented the CORAL losses, the rank inconsisten-
cies are 0 as expected. The Ordinal Model which implemented the
loss function from [26] has positive values for the average number
of inconsistencies which is a piece of evidence that the desired rank
consistency could not be guaranteed. Thus, the observations show
that the output from the TRCOR model is reasonable as the output
probabilities follow the common sense that they are ordered as the
keys.

5.3.4 Embedding Size. In Table 3, we evaluated the performance
of the TRCOR (Dense) model with different embedding sizes in-
cluding 64, 128, 256, and 512. We modify the embedding size for the
embedding layer which is used to learn the vector representation
for the notes. Among different embedding sizes, 256 seems to yield
the best results overall. For all the models with the embedding layer,
we do the experiment using the embedding size of 256.

6 CONCLUSION AND FUTURE WORK

In this paper, we develop a novel interpretable ordinal regression
model for music key prediction. The proposed TRCOR model can
guarantee the two-sided rank-monotonicity of the predicted prob-
abilities over the keys, which makes the results explainable. The
model can successfully extract the user singing capability from
the historical singing records and combine it with the target song
information. The experiments on the real-world karaoke dataset
demonstrate the effectiveness of the proposed approach. In future
work, we will apply the proposed two-sided rank consistent frame-
work to other tasks that may demand two-sided rank monotonicity.
For music key recommendation, we will explore transformers to
extract history vectors from users’ singing records and also study
different key decoders and history encoders to further improve key
recommendation.

Two-sided Rank Consistent Ordinal Regression for Interpretable Music Key Recommendation ICTIR 22, July 11-12, 2022, Madrid, Spain

REFERENCES

[23] Ling Li and Hsuan-tien Lin. 2007. Ordinal Regression by Extended Binary Clas-

(1]

A

=

Gediminas Adomavicius and Alexander Tuzhilin. 2005. Toward the next gen-
eration of recommender systems: A survey of the state-of-the-art and possible
extensions. IEEE transactions on knowledge and data engineering 17, 6 (2005),
734-749.

Oshin Agarwal, Yinfei Yang, Byron C Wallace, and Ani Nenkova. 2021. Inter-
pretability analysis for named entity recognition to understand system predic-
tions and how they can improve. Computational Linguistics 47, 1 (2021), 117-140.
David Alvarez-Melis and Tommi Jaakkola. 2017. A causal framework for explain-
ing the predictions of black-box sequence-to-sequence models. In Proceedings of
the Conference on Empirical Methods in Natural Language Processing. Association
for Computational Linguistics, Copenhagen, Denmark, 412-421.

Robin Burke. 2002. Hybrid recommender systems: Survey and experiments. User
modeling and user-adapted interaction 12, 4 (2002), 331-370.

Paul-Christian Biirkner and Matti Vuorre. 2019. Ordinal regression models in
psychology: A tutorial. Advances in Methods and Practices in Psychological Science
2,1(2019), 77-101.

Wenzhi Cao, Vahid Mirjalili, and Sebastian Raschka. 2020. Rank consistent
ordinal regression for neural networks with application to age estimation. Pattern
Recognition Letters 140 (2020), 325-331.

Wei Chu and S. Sathiya Keerthi. 2005. New Approaches to Support Vector
Ordinal Regression. In Proceedings of the 22nd International Conference on Machine
Learning. Association for Computing Machinery, New York, NY, USA, 145-152.
Koby Crammer and Yoram Singer. 2002. Pranking with Ranking. In Advances in
Neural Information Processing Systems, T. Dietterich, S. Becker, and Z. Ghahramani
(Eds.), Vol. 14. MIT Press, 641-647.

Piotr Dabkowski and Yarin Gal. 2017. Real time image saliency for black box
classifiers. Advances in neural information processing systems 30 (2017).

sification. In Advances in Neural Information Processing Systems, B. Scholkopf,
J. Platt, and T. Hoffman (Eds.), Vol. 19. MIT Press, 865-872.

K. Mao, L. Shou, J. Fan, G. Chen, and M. S. Kankanhalli. 2015. Competence-Based
Song Recommendation: Matching Songs to One’s Singing Skill. IEEE Transactions
on Multimedia 17, 3 (2015), 396—408.

Tomas Mikolov, Kai Chen, G. Corrado, and J. Dean. 2013. Efficient Estimation of
Word Representations in Vector Space. In Ist International Conference on Learning

Representations.
Zhenxing Niu, Mo Zhou, Le Wang, Xinbo Gao, and Gang Hua. 2016. Ordinal

Regression With Multiple Output CNN for Age Estimation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition.

Fabian Pedregosa-Izquierdo. 2015. Feature extraction and supervised learning on
fMRI : from practice to theory. Theses. Université Pierre et Marie Curie - Paris VL.
Colin Raffel. 2016. Learning-based methods for comparing sequences, with appli-
cations to audio-to-midi alignment and matching. Ph.D. Dissertation. Columbia
University.

Shyamsundar Rajaram, Ashutosh Garg, Xiang Sean Zhou, and Thomas S. Huang.
2003. Classification Approach towards Ranking and Sorting Problems. In Ma-
chine Learning: European Conference on Machine Learning, Nada Lavra¢, Dragan
Gamberger, Hendrik Blockeel, and Ljup¢o Todorovski (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 301-312.

Steffen Rendle. 2010. Factorization machines. In 2010 IEEE International Confer-
ence on Data Mining. IEEE, 995-1000.

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian Personalized Ranking from Implicit Feedback. In Proceedings
of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence. AUAI Press,
Arlington, Virginia, USA, 452-461.

R. Rothe, R. Timofte, and L. Van Gool. 2015. DEX: Deep EXpectation of Apparent

(10] Js csiierll)c};e;ln]zotz&;r}lllr;fo()g();.3{\7/[1115l(cz(l)r(l)go)rr;l;;l_oigetneval. Annual review of information Age from a Single Image. In IEEE International Conference on Computer Vision
[11] Mohamed Farah. 2009. Ordinal Regression Based Model for Personalized Infor-] ngoer:sslz(g; fzlegjs;rankowski Jon Herlocker, and Shilad Sen. 2007. Collaborative
mation Retrieval. In Conference on the Theory of Information Retrieval. Springer, . g § " .
6678 filtering recommender systems. In The adaptive web. Springer, 291-324.
[12] Zeon ;[‘revor Fernando, Jaspreet Singh, and Avishek Anand. 2019. A study on] Mike Schuster and Kuldip K Paliwal. 1997. Bidirectional recurrent neural net-
’ > .) ks. IEEE i) P ing 45, 11 (1 2673-2681.
the Interpretability of Neural Retrieval Models using DeepSHAP. In Proceedings] VAV;);n(Sm ShasgﬁZS:;ZUAn;:trl 5;‘5,?;258;?;&; w§t£ 9]_‘7,(1); :?\?lar 6i8n Principle:
of the 42nd International ACM SIGIR Conference on Research and Development in o ’ & wit 3 & pe:
Information Retrieval. 1005-1008 Two Approaches. In Proceedings of the 15th International Conference on Neural
[13] Ferdos Fessahaye, Luis Perez, Tiffany Zhan, Raymond Zhang, Calais Fossier, I"f ormation Processzng S stems..MIT Press, (;ambndge, MAT USAT 961-968.
Robyn Markarian, Carter Chiu, Justin Zhan, Laxmi Gewali, and Paul Oh. 2019.] Libin Shen andA Aravind K Joshi. 2005. Ranking and reranking with perceptron.
T-recsys: A novel music recommendation system using deep learning. In IEEE Machine Lgarnmg 60, 1T3 (2005), 73-96. .. .
International Conference on Consumer Electronics, IEEE, 1-6] Jaspreet Singh and Avishek Anand. 2020. Model agnostic interpretability of
[14] Ian Goodfellow, Yoshua Bengio, and Aaron Cour-ville 5016 ‘Dee learning. MIT rankers via intent modelling. In Proceedings of the Conference on Fairness, Ac-
press > 810,) - eep & countability, and Transparency. 618—628.
. Bing-Y i Li, Desh Dash Wu, Xiao-Ming Zh Wen-Bo Li.
[15] Chu Guan, Yanjie Fu, Xinjiang Lu, Enhong Chen, Xiaolin Li, and Hui Xiong. 2017.] 282% I? Sunl, é{uyk).ng. b les eng fas d}l’ llao e I?;% ;nd en=bo L
Efficient karaoke song recommendation via multiple kernel learning approxima- - Kernel discriminant learning for ordinal regression. ransactions on
tion. Neurocomputing 254 (2017), 22-32 Knowledge and Data Engineering 22, 6 (2009), 906-910.
[16] Chu Guan, Yanjie Fu, Xinjiang Lu, Hui Xiong, Enhong Chen, and Yingling Liu.] Aédron van den Oord, Sander Dieleman, and Benjamin Schrauwen. 2013. Deep

2016. Vocal Competence Based Karaoke Recommendation: A Maximum-Margin
Joint Model. In Proceedings of the SIAM International Conference on Data Mining.
135-143.

content-based music recommendation. In Advances in Neural Information Pro-
cessing Systems, Vol. 26. Neural Information Processing Systems Foundation,
9.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

(17] Ming He, Hao. Guo, Gugngyi Lv, Le Wu, Yong Ge, EI}hong Chen, and Haiping Ma‘ Aidan N Gomez, L ukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
2020. Leveraging proficiency and preference for online Karaoke recommendation. you Need. In Advances in Neural Information Processing Systems, Vol. 30. Curran
Frontiers of Computer Science 14, 2 (2020), 273-290. Associates. Inc ’

[18] Ralf Herbrich, Thore Graepel, and Klaus Obermayer. 1999. Support vector learn- Jun Wang’ Arjen P De Vries, and Marcel JT Reinders. 2006. Unifying user-

19 leg foé orgnllla l;egresgu;n. (319139{) to Cipolla. 2018. Multi-task 1 . . based and item-based collaborative filtering approaches by similarity fusion. In

[19] Alex endat, Yarin Lal, and Roberto LApota. - Viultitask fearning using Proceedings of the 29th annual international ACM SIGIR conference on Research
uncertainty to weigh losses for scene geometry and semantics. In Proceedings of and development in information retrieval. 501-508
th'e IEE.E conff{rence on cumputer vision and pattern recognition. 7482_7491',] Xinxi Wang and Ye Wang. 2014. Improving Content-Based and Hybrid Music

(20] I?le'den'k P. Kingma and]l'mmy Ba. 2015. Adam: A,MethOd for St(?ChaSth Op- Recommendation Using Deep Learning. In Proceedings of the 22nd ACM Inter-
timization. In 3rd International Conference on Learning Representations, Yoshua national Conference on Multimedia. Association for Computing Machinery, New
Bengio and Yann LeCun (Eds.). York. NY. USA. 627636 ’

[21] Yehuda Koren and J?e Sil'l. 2.011: OrdRec: An .Ordinal MQdel for Predicting] Yuar; Wa,ng, Sl’iigeki Taﬁaka, Keita Yokoyama, Hsin-Tai Wu, and Yi Fang, 2021.
Personalized Item Rating Dlstrlbgtlgns. In Proceedl{lgs of the Elﬁh ACM Conference Karaoke Key Recommendation Via Personalized Competence-Based Rating Pre-
[ojréllieclolr’r]miezrlder Systems. Association for Computing Machinery, New York, NY, diction. In IEEE International Conference on Acoustics, Speech and Signal Processing.

o IEEE, 286-290.

[22] G.Levi and T. Hassncer. 2015. Age and gender classification using convolutional ’

neural networks. In IEEE Conference on Computer Vision and Pattern Recognition
Workshops. 34-42.

Yongfeng Zhang, Xu Chen, et al. 2020. Explainable recommendation: A survey
and new perspectives. Foundations and Trends® in Information Retrieval 14, 1
(2020), 1-101.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Model Interpretability
	2.2 Ordinal Regression
	2.3 Karaoke Recommendation

	3 Data Description
	4 Proposed Model
	4.1 Preprocessing
	4.2 History Encoder
	4.3 Key Decoder
	4.4 TRCOR Loss Functions
	4.5 Theoretical Guarantee

	5 Experiments
	5.1 Baseline Methods
	5.2 Settings
	5.3 Results and Analysis

	6 Conclusion and Future Work
	References

