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ABSTRACT

In academic research, recommender systems are often evaluated on

benchmark datasets, without much consideration about the global

timeline. Hence, we are unable to answer questions like: Do loyal

users enjoy better recommendations than non-loyal users? Loyalty

can be defined by the time period a user has been active in a rec-

ommender system, or by the number of historical interactions a

user has. In this paper, we offer a comprehensive analysis of recom-

mendation results along global timeline. We conduct experiments

with five widely used models, i.e., BPR, NeuMF, LightGCN, SASRec

and TiSASRec, on four benchmark datasets, i.e.,MovieLens-25M,

Yelp, Amazon-music, and Amazon-electronic. Our experiment re-

sults give an answer “No” to the above question. Users with many

historical interactions suffer from relatively poorer recommenda-

tions. Users who stay with the system for a shorter time period

enjoy better recommendations. Both findings are counter-intuitive.

Interestingly, users who have recently interacted with the system,

with respect to the time point of the test instance, enjoy better

recommendations. The finding on recency applies to all users, re-

gardless of users’ loyalty. Our study offers a different perspective to

understand recommender accuracy, and our findings could trigger

a revisit of recommender model design. The code is available in

https://github.com/putatu/recommenderLoyalty.

CCS CONCEPTS

• General and reference → Empirical studies; Performance; •

Information systems → Recommender systems.
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1 INTRODUCTION

Recommender systems are often evaluated offline on a benchmark

dataset in academic research [19, 21]. That is, a dataset is split into

training set and test set. Then, a recommender model learns from

the training set and is evaluated on the test set. Many papers report

overall accuracy of their models on the test set, and conduct ablation

studies. However, analysis of recommendation accuracy from time

dimension is often lacking. In this paper, we study recommendation

accuracy by time-related factors, and aim to answer questions like:

Do loyal users enjoy better recommendations than non-loyal users?

We consider three time factors along the global timeline, illus-

trated in Figure 1. Suppose a test instance happens at time 𝑡 , we
have (i) number of accumulated interactions of a user before

time point 𝑡 ; (ii) active time period, e.g., number of days since

the user’s first interaction with any item in the system till time

𝑡 ; and (iii) recency, e.g., number of days from the user’s previous

interaction to time 𝑡 . We consider both “number of accumulated

interactions” and “active time period” as loyalty indicators, because

both factors reflect a user’s relationship with the system, or to what

extent the user is familiar with the system.

We evaluate five recommendation models - BPR [20], NeuMF [8],

LightGCN [7], SASRec [13], and TiSASRec [17]. Among them, BPR,

NeuMF, and LightGCN are general batch mode recommenders with-

out considering time in their design. That is, they model a user’s

preference using all his/her historical interactions, and do not con-

sider at what time points these interactions take place. SASRec is

a sequence-aware model which considers user’s historical inter-

actions in chronological order, while TiSASRec is a time-aware

recommender which takes time into consideration in their model

design. Our experiments are conducted on four publicly available

datasets, all with 10 years of interactions: MovieLens-25M, Yelp,

Amazon-music, and Amazon-electronic.

Experiment results show that loyal users suffer from poorer recom-

mendations, compared to non-loyal users for general recommenders
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Figure 1: The time factors we considered in our analysis

BPR, NeuMF, and LightGCN. This finding is counter-intuitive. In

general, we expect that preferences of loyal users can be more

accurately modeled by recommenders, because they have more

interactions or have spent more time with the system. This counter-

intuitive finding provokes us into thinking whether all historical

interactions of users are indeed useful for learning user preference.

For sequential recommenders, i.e., SASRec and TiSASRec, there

are cases whereby loyal users and non-loyal users enjoy compa-

rable recommendation accuracy. One reason is that SASRec and

TiSASRec work with each user’s local timeline, hence they treat

recent interactions of a user differently from his/her past interac-

tions. Here, local timeline refers to the sequential order of a specific

user’s interactions, without considering the absolute time of these

interactions along the global timeline.

Further analysis on the recency factor shows that, users who

have interactions close to the test time point 𝑡 , receive better rec-
ommendations, than those who last interact with the system some

time ago. This observation holds for all the five recommenders,

regardless of whether they are time-aware or not. It is a strong

evidence that more recent interactions, with respect to the test

time, are more helpful in recommendation. Here, recent interac-

tions are defined with respect to the global timeline (see Figure 1).

Note that, time-aware models SASRec and TiSASRec do not show

better ability in distinguishing recent interactions along the global

timeline, because they model a user’s interactions as a sequence

and does not consider interactions with respect to the test time.

Our research findings suggest that user’s interests change in

a long run. More recent interactions better reflect users’ current

interests, while past interactions could be considered outdated.

However, recent interactions refer to a dynamic and changing set of

interactions along the global time dimension because the number

of available items in the system may change from time to time.

These interactions cannot be accurately modeled based on a user’s

local timeline. That is, to a specific user, the most recent interaction

with respect to his/her past interactions may not be “recent” with

respect to a time point along the global timeline. For example, a

user’s last purchase from an e-commerce website may happen in

last day, last week, or even last year. Based on our findings, we call

for a revisit on recommender model design. Rather than treating all

historical interactions equally, we might need to pay more attention

to recent interactions when a recommendation decision is to be

made, along the global timeline.

2 RELATEDWORK

Many existing recommender models take time into consideration.

Commonly, time is taken into account to preserve sequential or-

der of a user’s interactions. For instance, GRU4REC [9] applies

Recurrent Neural Network (RNN) on sessions to capture sequen-

tial dependencies between items in user’s interactions. Some other

studies [16, 18] combine attention mechanism with RNN network,

and model not only the sequential relationship in sessions but also

relative importance of items along the sessions. Inspired by Trans-

former, self-attention network based recommenders [13, 17, 22, 23]

have also been widely adopted to learn long-term dependencies.

Positional embedding is used in self-attention network to model

position of an item in an interaction session. Time has also been

considered in recommendation as an attribute or contextual in-

formation. Analysis on Amazon-datasets shows that demand of

T-shirts follows a seasonal cycle [24]. Hansen et al. [6] highlight

the importance of time context in music consumption. There is also

study on the time context in emoji recommendation [25]. These

recommenders embed time context into embedding vectors and

incorporate time context features in recommendation. Another

way to take time into consideration is by relative time. A few stud-

ies [17, 24] emphasize the importance of time interval between

interactions in recommendation.

Time has also been factored in through recency of past interac-

tions, particularly in the news recommendation task. Recency is

defined with respect to the time when a recommendation is made.

The authors in [3] acknowledge the importance of recency, and

propose a news recommender model that balances the trade-off

between recency and relevancy. Here, recency concerns item’s age

at the time point of recommendation, as the items are news arti-

cles. Hence, their definition of recency is different from ours. Other

work like [15] considers recency of past interactions in collaborative

filtering. It shows that adopting different recency windows in rec-

ommender design can lead to different recommendation accuracy.

Similarly, the authors of [4] demonstrate the influence of recency

based decay functions used in collaborative filtering recommenders.

The above reviewed papers incorporate time factors in their rec-

ommender designs, either motivated by pre-experiment analysis

on datasets, or by intuition and domain knowledge. In contrast, we

conduct post-experiment analysis on the recommendation results

of various models, on multiple datasets representing different rec-

ommendation tasks. Our analysis further explains the influence

of time factors (e.g., active time period, and recency) in general

recommendation setting.

3 EXPERIMENT

In this section, we detail datasets, the evaluated recommendation

models, and the experiment setup.

3.1 Datasets and Evaluated Models

We conduct experiments on four public datasets: MovieLens-25M,

Yelp, Amazon-music, and Amazon-electronic. All interactions in

these four datasets come with timestamps. From each dataset, we

extract interactions in a 10-year time period for experiments (see

Table 1 for the starting time of each dataset). After that, we filter

the extremely inactive items or users. We adopt 𝑘-core filtering for

Yelp, Amazon-music, and Amazon-electronic. After 𝑘-core filtering,
all users and items in the dataset will have at least 𝑘 interactions.

Depending on the dataset size and sparsity, we choose 10-core

for Yelp and Amazon-electronic, and 5-core for Amazon-music.
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Table 1: Statistics of the four datasets, all covering interactions in 10-year period from their starting time.

Dataset Starting time Data filtering #User #Item #Data instances

MovieLens-25M 21 Nov 2009 No filtering 62, 202 56, 774 9, 808, 925
Yelp 13 Dec 2009 10-core 116, 655 61, 027 3, 127, 215
Amazon-music 02 Oct 2008 5-core 11, 651 9, 243 114, 833
Amazon-electronic 05 Oct 2008 10-core 109, 990 39, 552 1, 752, 238

Table 2: Average #Interactions, ATP (days) and Recency (days) for each user group.

Dataset Baselines
#Interactions ATP (days) Recency (days)

Loyal Users Non-loyal Users Loyal Users Non-loyal Users Active Users Inactive Users

MovieLens-25M

General Recommenders 505.0 61.4 909.2 3.3 1.6𝑒 − 4 32.2
SASRec 40.0 28.1 385.9 1.1 1.6𝑒 − 4 32.2
TiSASRec 36 26.4 366.9 1.0 1.6𝑒 − 4 32.2

Yelp

General Recommenders 48.2 11.8 2299.2 964.1 12.5 283.0
SASRec 17.9 11.8 1899.1 622.9 12.5 283.0
TiSASRec 32.2 11.8 2173.8 864.9 12.5 283.0

Amazon-music

General Recommenders 17.7 4.7 1592.3 445.0 1.7 447.8
SASRec 16.1 4.7 1578.5 434.2 1.7 447.8
TiSASRec 15.6 4.7 1572.0 429.4 1.7 447.8

Amazon-electronic

General Recommenders 21.8 10.2 2208.5 1012.0 15.1 373.8
SASRec 21.1 10.2 2188.9 1003.1 15.1 373.8
TiSASRec 18.5 10.2 2101.1 940.1 15.1 373.8

No filtering is performed on MovieLens-25M because MovieLens

dataset ensures each user has at least 20 ratings. Table 1 reports the

statistics of the four datasets after filtering.

Our findings are made on recommendation results by five widely

used baselinemodels1: BPR, NeuMF, LightGCN, SASRec, and TiSAS-

Rec. Each baseline represents one type of recommendation. BPR,

NeuMF, and LightGCN are general recommender models which

do not take time into consideration. BPR learns users’ and items’

latent factors via a pairwise ranking loss in matrix factorization.

NeuMF learns user and item interaction function with a model

that combines both matrix factorization and multi-layer percep-

tron. LightGCN is a graph-based recommender model that learns

complex relationships between users and items, by using graph

convolutional network. SASRec and TiSASRec are time-aware mod-

els which consider time at which interactions take place. SASRec

is a self-attentive network that models the sequential pattern in

user’s behaviour. TiSASRec is inspired from SASRec but takes time

intervals between events as input.

In our experiments, we adopt leave-one-out data split but with

well consideration of data leakage, to be detailed in Section 3.2. For

each model, we tune their hyperparameters by continuous random

search, in each run of the experiment. Similar to other work [1, 10],

we tune hyperparameters by using a validation set that consists of

the second last interaction of each user.

1We implement the general recommenders, i.e., BPR, NeuMF and LightGCN, using
Recbole [26]. For SASRec and TiSASRec, we follow the implementations in https://
github.com/pmixer/SASRec.pytorch and https://github.com/JiachengLi1995/TiSASRec
respectively.

We adopt Hit Rate (HR) and Normalized Discounted Cumulative

Gain (NDCG) as evaluation metrics. In this research, we rank all

available items and make top-𝑁 recommendations. That is, we do

not use sampled metrics, because sampled metrics introduce bias

in recommendation accuracy [14].2

3.2 Evaluation Setting

Recently a few studies [5, 11, 12] highlight the issue of data leakage

in offline evaluation of recommender system. In particular, data

partition strategies (e.g., leave-one-out and random-split-by-ratio)

that do not follow global timeline will allow the training of recom-

mendation model using future training instances. Future training

instances are the interactions that take place after the time point of

a test instance. To strictly follow the global timeline and completely

avoid data leakage, it is suggested to adopt a streaming setting [12],

i.e., taking interactions happened before a time point 𝑡 for training
and predict test instances at 𝑡 , with a changing 𝑡 along the global
timeline. This streaming setting requires the recommenders to be

designed to take in incremental inputs along timeline. However,

BPR, NeuMF, LightGCN, SASRec and TiSASRec are not incremental.

We understand incremental models exist. However, batch recom-

mendation models remain the mainstream in academic research.

Here, our objective is to conduct post-experiment analysis of batch

models’ results by time factors.

To minimize the impact of data leakage on batch models, we

follow the evaluation setting used in [12] for our experiments.

The key idea is to keep the number of future instances reasonably

2In this paper, we only present the HRs and NDCGs on top-10 recommendations.
Similar findings hold for top-5 and top-20 recommendations.
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Figure 2: HR@10 and NDCG@10 of loyal and non-loyal users

by number of interactions, in test year 𝑌10

small. Specifically, given a dataset, we first conduct leave-one-out

split. That is, for each user, we treat his/her last interaction as test

instance, and the remaining interactions as training instances. We

adopt leave-one-out split in this study because it is a widely used

data partitioning strategy in recommender system [21]. Moreover,

it allows the recommendation models to have a complete picture of

a user’s historical interactions by masking only the last interaction

of the user as test instance. After obtaining training and test sets,

we follow [12] to conduct evaluation on test instances that happen

in a specific year.

Recall that each dataset contains 10-year instances, we select

test instances that happened in a particular year for evaluation.

Assuming we take year-6, denoted by 𝑌6, as the test year, then

test instances that happened in 𝑌6 will be in the test set for this

run of experiment. All instances before 𝑌6 (i.e., 𝑌1 to 𝑌5) and the

training instances in 𝑌6 will be used for training. Based on this

experiment setting, we run three sets of experiments on each of the

four datasets, using 𝑌6, 𝑌8, and 𝑌10 as test years respectively. We

experiment on three test years because recommender behaviours

can vary along the timeline [2]. Through experiments, we find that

results on three test years show very similar trends. Hence, we

only present the results for test year 𝑌10 to avoid having too many

similar plots.

4 EXPERIMENT RESULTS

We now study recommendation results to answer questions on user

loyalty. Here, loyalty can be indicated by: (i) number of accumulated

interactions a user has, and (ii) active time period of a user.

4.1 Loyalty by Number of Interactions

Recall that we use leave-one-out-split to partition the dataset into

training and test sets. That is, we treat each user’s last interaction

as test instance while the remaining interactions that happened

before the test instance are training instances. The number of user’s

interactions in the training set can be an indicator of user loyalty.
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Figure 3: HR@10 and NDCG@10 of loyal and non-loyal users

by active time period, in test year 𝑌10

For simplicity, we rank users by their number of interactions in

training set. The users who rank among the top 50% are loyal users;

the rest are non-loyal users. The average number of interactions

for both loyal users and non-loyal users can be found in Table 2.

Note that, for SASRec and TiSASRec, only the most recent 𝑛 inter-

actions of each user are used in training. That is because SASRec

and TiSASRec are built on top of self-attention network which

requires memory quadratic to sequence length of user interactions.

Following the original papers of SASRec and TiSASRec, we tune

𝑛 as a hyperparameter. Hence, in Table 2, the average number of

interactions for loyal users and non-loyal users appears to be dif-

ferent for SASRec, TiSASRec and the general recommenders - BPR,

LightGCN and NeuMF.

Figure 2 plots the recommendation accuracy by HR@10 and

NDCG@10 for loyal and non-loyal users that are defined by num-

ber of interactions. For HR@10, all the five models give better

recommendations to non-loyal users on MovieLens-25M, Yelp, and

Amazon-music. On Amazon-electronics, only SASRec and TiSAS-

Rec offer better results for loyal users. As for NDCG@10, non-loyal

users enjoy better recommendations than loyal users except for

TiSASRec on Amazon-music as well as SASRec and TiSASRec on

Amazon-electronic. Nevertheless, the overall trend suggests that

non-loyal users enjoy better recommendations than loyal users, partic-

ularly for general recommenders. This finding violates our intuition

that more historical data leads to better learning of user’s preference

in recommendation. Hence, we hypothesize that not all historical

interactions by a user are helpful for making “recent” recommen-

dations.

4.2 Loyalty by Active Time Period

Purely considering number of interactions as a loyalty measure is

not sufficient. A user can have many interactions within a short

time period. In light of this, we introduce a new loyalty indicator:

Active Time Period (ATP), which is the number of days between

a user’s first interaction and last interaction. If a user has a long
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Figure 4: HR@10 and NDCG@10 for users grouped by re-

cency of previous interaction before test instance.

active time period, then the user has a long-term engagement with

the system, and is a loyal user.

In our experiments, ATP is the number of days between a user’s

first interaction in the training set and the time of his/her test

instance. Loyal users have ATP longer than the median ATP value.

Figure 3 plots HR@10 and NDCG@10 of loyal and non-loyal users

indicated by active time period.

In general, non-loyal users, who have shorter active time period,

enjoy better HR@10 and NDCG@10 than loyal users. A loyal user,

by active time period, is a user who has started interacting with the

system since a long time ago. On the one hand, the system has a

better chance to capture the user’s long-term interest. On the other

hand, interactions that happened long time ago may not necessary

represent the user’s current preference. In Figure 3, our results

suggest mostly the latter on multiple datasets. We also observe

that loyal and non-loyal users enjoy comparable recommendation

accuracy by SASRec and TiSASRec on four datasets. That is because

SASRec and TiSASRec are designed to treat recent interactions and

old interactions differently for each individual user.

So far, our results show that preference of loyal users may not

be well predicted, especially for general recommenders which treat

all training instances equally. We hypothesize that this observation

is attributed to the outdated interactions that happened a long

time ago. These interactions cannot reflect a user’s current interest.

Hence, it motivates us to investigate another time factor: recency.

4.3 Recency

We define recency by the number of days between a user’s test in-

stance and his/her previous interaction just before the test instance.

Again, we rank all users and take the 50𝑡ℎ percentile recency as

threshold. We name the users with short recency as active users

and the remaining as inactive users. As shown in Table 2, average

recency for active users and inactive users are of the same values

for all recommenders. Regardless of whether the models are gen-

eral recommenders or sequential recommenders, recency value is

not affected because it is calculated based on the time of the last

interaction and the time of the test instance.

Figure 4 plots HR@10 andNDCG@10 scores for both user groups.

All recommenders, both general and sequential recommenders,

deliver better recommendation results for active users, by both

HR@10 and NDCG@10 measures. This finding provides strong ev-

idence that more recent interactions matter more. This finding also

partially explains the previous findings which suggest that loyal

users suffer from poorer recommendations than non-loyal users.

Moreover, we note that all recommenders, regardless of whether

they consider time information in their model design, show similar

trends on the recency factor. Even time-aware recommenders, SAS-

Rec and TiSASRec, do not consider the recency factor because “time”

is considered only during model training, but not when making

recommendations at the test time. In fact, SASRec and TiSASRec

both consider local timeline specific to a user (i.e., a user’s interac-

tion sequence) but not the global timeline. Based on the finding on

recency, we argue that recommender shall consider recent inter-

actions dynamically, with respect to the time point when making

recommendations, along the global timeline.

5 CONCLUSION

In this paper, through experiments, we show that time matters in

recommendation. Here, we refer time with respect to the “global

timeline” instead of “local timeline” where the latter is specific to a

user. Having many interactions or having a long active time may

adversely affect recommendation accuracy. Instead, recommenders

give better results if users have recent interactions. On the other

hand, recent interactions change continuously along the global

timeline. Hence, we call for a revisit of model design in recom-

mender system. The model should be able to capture the dynamics

along the global timeline, thus to update user preference with the

most recent context.
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