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ABSTRACT
Exploiting cross-modal attention on image region features and text
features, cross-modal BERT models have achieved higher accuracy
than the embedding-based methods in cross-modal text-image re-
trieval. Nevertheless, cross-modal BERT models take image-text
pairs as input, requiring a quadratic computational complexity.
Thus, cross-modal BERT models are prohibitively slow and not scal-
able. A remedy is a two-stage strategy, wherein the first stage uses
an embedding-based method to retrieve top 𝐾 items and the second
stage deploys the heavy cross-modal BERT to re-rank these𝐾 items.
Nevertheless, to achieve a satisfying accuracy, 𝐾 should be large,
making the retrieval in the second phase still slow. In this paper, we
propose a U-BERT model to achieve an effective and efficient cross-
modal retrieval. Our model decomposes each image/text feature
into an intra-modal component and an inter-modal component. In
the first stage, U-BERT only uses the intra-modal component of
the image/text features to obtain the text-image similarity scores
based on two independent encoders, with a linear computation
complexity. In the second stage, U-BERT reuses the intra-modal
component and additionally use the inter-modal component as the
complementary residual to enhance the intra-modal component’s
discriminating capability. By reusing the intra-modal component,
we only need few Transformer layers to generate the inter-modal
component, making the second phase efficient even facing a large
𝐾 . Extensive experiments on public benchmarks demonstrate the
efficiency and effectiveness of the proposed U-BERT.

CCS CONCEPTS
• Computing methodologies → Visual content-based index-
ing and retrieval; • Information systems→ Image search; Mul-
tilingual and cross-lingual retrieval;Multimedia andmultimodal
retrieval.

KEYWORDS
retrieval, search, computer vision, cross-modal, deep learning, cross-
lingual, natural language understanding
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1 INTRODUCTION
With the rapid growth of multimedia data, cross-modal retrieval has
received significant attention from both academia [2, 44, 51, 52] and
industry [19, 20, 35, 58]. Due to the modal gap between different
data types, it is quite challenging to obtain a reliable similarity mea-
surement. In this work, we focus on the retrieval task between two
most common data types: text and image. Generally speaking, the
existing solutions to image-text matching fall into two categories:
embedding-based methods [7, 9, 12, 39, 44, 58] and attention-based
methods [3, 8, 21, 24, 30–32, 36, 48, 53, 54, 57, 59, 60, 62, 63].

Embedding-based methods [7, 9, 12, 18, 39, 40, 44] map the im-
ages and texts into a joint feature space. They adopt two encoders to
generate the image embedding and the text embedding separately.
In the search phase, the similarity between a text and an image
is calculated from the image embedding and the text embedding.
In the training phase, the image encoder and the text encoder are
optimized to increase the similarities between a text and its relevant
images and decrease that between its counterparts. Decoupling the
image features and sentence features, embedding-based methods
enjoy high efficiency by precomputing and caching image embed-
dings. Owing to the high efficiency, embedding-based methods have
been widely deployed in large-scale cross-modal retrieval systems.

In parallel, attention-based methods [3, 14, 16, 17, 21, 24, 32, 36,
48, 53, 54] represent an image by a set of region features and rep-
resent a text by a sequence of word features. When conducting
the matching between an image and a sentence, attention-based
methods [49] pay more attention to critical regions in the image
and key words in the sentence. Benefited from exploiting fine-level
matching, attention-based methods normally achieve higher re-
trieval accuracy than embedding-based methods. Recently, inspired
by the great success of BERT [6] in natural language processing
tasks, several cross-modal BERT models emerge [4, 25, 28, 32, 37,
46, 48, 61, 63] and achieve state-of-the-art performance.

Nevertheless, due to the dependency between the text features
and image features, the attention-based methods are much slower
than embedding-based methods. For instance, given 𝑁 texts and
𝑁 images, embedding-based methods only need to extract 𝑁 text
features and 𝑁 image features separately with a complexity O(𝑁 ).
In contrast, the cross-modal BERT consumes 𝑁 2 input text-image
pairs to obtain text-image similarities, since the image features and
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Figure 1: The scalability of cross-attention BERT and our U-
BERT. Given 𝑁 texts and 𝑁 images, the retrieval latency (𝑇 )
of the cross-attention BERT to obtain text-image similari-
ties is a quadratic function of 𝑁 . In contrast, the retrieval
latency of our U-BERT is a linear function of 𝑁 .

the text features are dependent in cross-modal BERT. Thus, the
total computational complexity of the cross-modal BERT method is
O(𝑁 2). The quadratic computational complexity of the cross-modal
BERT method is significantly larger than the linear computational
complexity of the embedding-based method. Despite that the cross-
modal BERT methods have achieved state-of-the-art cross-modal
retrieval accuracy, they are prohibitively slow and not scalable as
visualized in Figure 1.

A trade-off between accuracy and efficiency is a two-stage strat-
egy, which is recently investigated by LightningDOT [47] and Gei-
gle et al. [11]. They adopt an efficient joint-embedding method for
large-scale retrieval in the first stage to obtain a small-scale set of 𝐾
candidate items. Then, it adopts a heavy cross-modal BERT model
to re-rank the𝐾 candidate items for higher retrieval accuracy. Since
𝐾 is smaller than the total number of reference items in the corpus,
the efficiency is boosted. Nevertheless, to achieve a satisfactory
retrieval accuracy, 𝐾 cannot be too small. Thus the retrieval is still
slow. When using re-ranking, LightningDOT [47] only achieves a
46× speed-up ratio over the cross-modal BERT UNITER-base [4].

To achieve an effective and efficient cross-modal retrieval, we
propose a novel model as shown in Figure 2. It consists of two tall
encoders BERTimg and BERTtxt as well as a low encoder BERTcross.
Since it is in aU shape, we term it as U-BERT. It decomposes the text
feature T as well as the image feature I into an intra-modal compo-
nent Iintra/Tintra and an inter-modal component Iinter/Tinter. The
intra-modal component of the text feature Tintra and that of the im-
age feature Iintra are obtained from the text encoder BERTtxt and the
image encoder BERTimg, separately. Meanwhile, the inter-modal
component Tinter of the text feature and that of the image feature
Iinter are obtained from BERTcross. They exploit the cross-modal
attention and serve as the complementary residues to enhance the
intra-modal components. In the retrieval phase, we first only use
the intra-modal components Iintra/Tintra to retrieve top𝐾 reference
items. Since the intra-modal components do not need cross-modal
attention, they achieve fast retrieval as embedding-based methods.
Then, in the second stage, we enhance the intra-modal components
Iintra/Tintra through the inter-modal components from BERTcross.
Thanks to reusing the intra-modal components, we only need a

token 
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... ...

inter-modal
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inter-modal
attended tokens
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image text

region 
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intra-modal 
attended regions

Figure 2: The architecture of U-BERT. The region/token fea-
tures are fed into a heavy BERTimg/BERTtxt to generate an
intra-modal component of the image/text features. Mean-
while, an inter-modal component of the text/image fea-
tures is obtained from a lightweight BERTcross. The final im-
age/text features is obtained by summingup the intra-modal
component and the inter-modal component.

lightweight BERTcross to achieve an excellent retrieval accuracy. In
fact, using a BERTcross with only 3 Transformer layers, the perfor-
mance of our U-BERT is comparable to the cross-modal BERT with
12 Transformer layers. Benefited from the two-stage configuration,
our U-BERT is efficient and scalable as shown in Figure 1.

We conduct comprehensive experiments on three benchmarks
(MSCOCO1K, MSCOCO5K and Flickr30K) to show the efficiency
and the effectiveness of U-BERT. We achieve a comparable retrieval
accuracy with vanilla cross-modal BERT methods on these public
benchmarks. Meanwhile, we obtain an around 160× speed-up ratio
on Flickr30K as well as MSCOCO1K dataset, and an around 780×
speed-up ratio on MSCOCO5K dataset.

2 RELATEDWORK
Embedding-basedmethods. Early embedding-basedmethods [12,
39] are based on correlation canonical analysis (CCA) [13]. They
project the text features and image features into a joint feature space.
In this case, the text-image similarity can be determined by their
distance in the feature space. Recently, deep neural networks [7, 9]
are exploited to generate more effective text and image embeddings.
For example, VSE++ [7] extracts the image embedding through a
CNN and meanwhile generates the text embedding from an RNN.
It optimizes the similarities between texts and images based on a
triplet loss widely used in metric learning. To make the training
more effective, VSE++ adopts hard negative mining to focus more
on the hard negative samples. Xu et al. [53] propose a polynomial
loss for more effective cross-modal matching through adaptively
weighting the hard pairs. In parallel, MRAM [3] adopts adversarial
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learning to enhance the robustness of the learned metric for high
effective cross-modal retrieval. The advantage of embedding-based
methods is high efficiency. We only need to individually extract the
global text/image embedding for each text/image. Then the similar-
ity between a text and an image is efficiently obtained by computing
the similarity between their embeddings. Recently, CLIP [40] and
Align [18] exploit the embedding-based method for self-supervised
learning based on text-image pairs. They crawl huge-scale text-
image corpus from the website and train an image encoder as well
a text encoder based on the text-image pairs. After that, the trained
image encoder will be fine-tuned in the downstream tasks such as
image recognition, segmentation and object detection.

Attention-based methods exploit the interactions between lo-
cal features of images and texts. They represent an image by a
set of region features and a text by a set of words. They conduct
fine-level matching between region features and word features. A
pioneering attention-based method, SCAN [24] pays more atten-
tion to the regions and words with high relevance and suppresses
the bad effects from the distracting background. Note that SCAN
only exploits the attention in the late stage when the region fea-
tures and word features have already been obtained. To exploit
attention more thoroughly, recent attention-based methods adopt
a graph-convolution network [26] or Transformer layers [50] to
exploit the cross-modal attention in the early stage. Recently, in-
spired by the success achieved by BERT [6] in natural language
processing tasks, many cross-modal BERT methods are proposed.
Based on the structure, they can be grouped into two categories: 1)
single-stream methods [4, 10, 25, 28, 45] and 2) two-stream meth-
ods [5, 32, 33, 48]. The single-streammodel simply concatenates the
word features and region features. It adopts a single BERT model
to exploit the cross-modal attention between region features and
word features. In contrast, the two-stream model uses two BERT
models. The image-stream BERT model uses region features to at-
tend word features, and the text-stream BERT model utilizes word
features to attend region features. Both the single-stream model
and the two-stream model design several pre-training tasks to en-
hance their cross-modal understanding capability. Benefited from
exploiting cross-modal attention and pre-training on large-scale
datasets, cross-modal BERT methods have achieved excellent per-
formance in many cross-modal understanding tasks, such as image
captioning, visual question answering, and cross-modal retrieval.
Recently, VILLA [10] improves the robustness of the cross-modal
BERT model through adversarial learning. OSCAR [28] improves
the cross-modal BERT model by exploiting additional tags from
object detectors. ERNIE-ViL [56] boosts the cross-modal under-
standing capability through exploiting the external knowledge.
UNIMO [27] proposes a unified learning framework for learning
the text and the visual representation jointly. VinVL [65] further
improves OSCAR by using more effective vision features. They
are prohibitively slow for large-scale cross-modal retrieval in real
applications. ViLT [22] builds a pure Transformer architecture for
fast cross-modal understanding. It does not need the expensive
computational cost from pre-trained object detector and thus the
efficiency is boosted. Nevertheless, in the cross-modal retrieval
task, ViLT also suffers from quadratic computational cost, which
is too slow in large-scale retrieval applications. Recently, Nie et

al. [38] investigates the effectiveness of pure MLP-based architec-
ture for cross-modal understanding. Nevertheless, the cross-modal
BERT methods take text-image pairs as input, leading to quadratic
computational complexity.

Hybrid methods. To improve the efficiency, VisualSparta [33]
adopts a lightweight cross-modal attention operation only on local
features from the output of the BERT model. Inflate & Shrink [30]
exploits the late-stage cross-modal attention and additionally adopts
the knowledge distilling to further reduce the computation cost. In
parallel, LightningDOT [47] and Gregor et al. [11] adopt a two-stage
strategy. In the first stage, they adopt an efficient embedding-based
method to rank reference items in the corpus and obtains top 𝐾
relevant items. Then it deploys the heavy cross-modal BERT to
re-rank the top 𝐾 relevant items in the initial list. Since the number
of items for re-ranking (𝐾 ) is much smaller than the total number of
items in the corpus, the retrieval efficiency is significantly boosted.
To save the memory, Gregor et al. [11] share the weights between
the embedding-basedmodel in the first stage and the cross-attention
model in the second stage. Nevertheless, their speed-up ratio over
the attention based methods is still relatively low. The U-BERT
in this work also adopts the two-stage scheme. We decouple the
text/image feature into an intra-modal component and an inter-
modal component. The intra-modal component is generated from
an embedding-basedmethod and is used in the first-stage ranking to
obtain the top-K items. Then, in the second stage, we reuse the intra-
modal component and combine it with the inter-modal component
obtained from a cross-attention model for re-ranking. Thanks to
reusing the intra-modal component in the second stage, we only
need a lightweight cross-modal BERT in the re-ranking stage and
thus our U-BERT is significantly faster than the aforementioned
two-stage methods including Sun et al. [47] and Geigle et al. [11].

3 PRELIMINARY

Image

Text

Encoderimg

Encodertxt

I

T

Figure 3: The architecture of embedding-based methods.
The image encoder extracts the image feature I and the text
encoder generates the text feature T. The text-image similar-
ity is computed from T and I.

Embedding-based methods extract the image embedding for the
image 𝐼 and the text embedding for the text𝑇 through two encoders.
As visualized in Figure 3, the image encoder extracts the image
embedding I and the text encoder extracts the text embedding T.
The similarity between 𝐼 and 𝑇 is determined by the similarity
between the image embedding I and the text embedding T:

𝑠 (𝑇, 𝐼 ) = ⟨T, I⟩
∥T∥2∥I∥2

. (1)

Since the embedding-based methods individually encode the texts
and images, they are efficient for large-scale cross-modal retrieval.
Given𝑄 texts and 𝑃 images, joint-embedding methods only need to
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Figure 4: The architecture the cross-modal BERT. Region
features, token features and the special token feature are
concatenated into a long sequence, which is fed into a stack
of 𝐿 Transformer layers to exploit the cross-modal attention.
The attended special token feature is further fed into a fully-
connected (FC) layer to obtain the text-image similarity.

extract 𝑃 image embeddings and 𝑄 text embeddings with computa-
tion cost of O(𝑃 +𝑄). Nevertheless, due to the lack of interactions
between text and image features, the embedding based methods
are normally less accurate than attention-based methods.
Cross-modal BERT can be categorized into one-stream architec-
ture [4, 10, 25, 28, 45] and two-stream architecture [5, 32, 33, 48].
Both of them exploit the cross-modal attention to enhance the
discriminating capability of the image’s region features and text’s
token features. For the easiness of illustration, we mainly introduce
the one-stream architecture due to its simplicity in the formula-
tion. Given an image 𝐼 , a set of regions {𝑟𝑖 }𝑀𝑖=1 are detected by a
pretrained object detector, e.g. faster R-CNN [41]. Each region 𝑟𝑖 is
represented by a region feature r𝑖 , which is obtained by summing
up its visual feature v𝑖 from faster R-CNN, its positional feature
obtained based on the coordinates of the region, and an image type
embedding e𝑖 :

r𝑖 = v𝑖 + p𝑖 + e𝑖 , (2)

Each region feature r𝑖 represents a candidate object in the image.
In parallel, a text 𝑇 in the input is converted into a sequence

of tokens [𝑡1, · · · , 𝑡𝑁 ] by a tokenizer. Each token 𝑡𝑖 (𝑖 ∈ [1, 𝑁 ]) is
represented by a token feature t𝑖 , which is obtained by summing
up its word embedding, positional embedding, and type embedding.
One-stream cross-modal BERT concatenates the region features
of the image {r𝑖 }𝑀𝑖=1, token features from the text {t𝑖 }𝑁𝑖=1, and a
special token feature tcls into a long sequence S:

S = [r1, · · · , r𝑀 , t1, · · · , t𝑁 , tcls] . (3)

After that, as visualized in Figure 4, cross-modal BERT feeds
S into a stack of Transformer layers to exploit the cross-modal
attention:

S̄ = Transformer×𝐿 (S) = [r̄1, · · · , r̄𝑀 , t̄1, · · · , t̄𝑁 , t̄cls] . (4)

Then the attended feature of the special token t̄cls is fed into a
fully-connected (FC) layer to obtain the text-image similarity:

𝑠 (𝑇, 𝐼 ) = FC(t̄cls). (5)

Benefited from exploiting cross-modal attention, cross-modal BERT
methods achieve higher retrieval recall than joint-embedding meth-
ods. Nevertheless, the cross-modal BERT takes the text-image pair
as input and is slow in large-scale cross-modal retrieval. Given
𝑄 texts and 𝑃 images, the cross-modal BERT needs to compute
𝑃𝑄 text-image pairs with O(𝑃𝑄) computational complexity to ob-
tain their similarities, which is prohibitively slow for large-scale
cross-modal retrieval in real applications.
Re-ranking. A trade-off between retrieval efficiency and effective-
ness is a two-stage retrieval strategy. In the first stage, given a query,
we can efficiently obtain the relevance between the query and all
reference items through an embedding-based method. We select
the most relevant 𝐾 reference items based on the initial matching
in the first stage. In the second stage, we use a cross-modal BERT
to re-rank the obtained 𝐾 reference items from the first stage. By
exploiting the cross-modal attention in the re-ranking stage, it can
achieve higher retrieval accuracy than embedding-based methods.
Meanwhile, the number of images for re-ranking, 𝐾 , is much less
than the total number of reference items. Thus, the re-ranking
phase is much faster than directly using cross-modal BERT to rank
all reference items in the corpus. The computational cost in the
re-ranking stage is O(𝐾𝐶), where 𝐶 is the computation cost for
computing a text-image pair in the cross-modal BERT. To achieve a
fast retrieval, 𝐾𝐶 should not be large. On the other hand, to achieve
an effective re-ranking, 𝐾 should be large enough. To maintain a
small 𝐾𝐶 and a large 𝐾 , the only choice is to decrease 𝐶 . We will
introduce our U-BERT taking small 𝐶 for fast re-ranking.

4 U-BERT
The computation cost of cross-modal BERT, 𝐶 , is linear with the
number of Transformer layers. We define the computation cost of
a single Transformer layer as 𝑐 . Straightforwardly, we have 𝐶 = 𝐿𝑐

where 𝐿 is the number of Transformer layers. A naive solution to
reduce 𝐶 is using less Transformer layers. Nevertheless, using less
Transformer layers in cross-modal BERT leads to significant per-
formance drop as shown in Unicoder-VL [25]. Below we introduce
our U-BERT for fast and accuracy cross-modal retrieval.

4.1 Architecture
To reduce the computation cost and meanwhile maintains the high
retrieval accuracy, U-BERT decomposes the image feature as well
as the sentence feature into two components: the intra-modal com-
ponent and the inter-modal component. Suppose the image feature
I = 𝛼Iintra + Iinter where Iintra denotes the intra-modal component,
Iinter denotes the inter-modal component, and 𝛼 is a positive con-
stant to balance the contributions from each component. Without
cherry-picking, we set 𝛼 = 0.5 on all experiments, by default. In
parallel, the text feature T = 𝛼Tintra + Tinter. The merit of this
form of decomposition is that the intra-modal components Tintra
and Iintra are only depended on the features from the single modal
but independent from the other modal. If we use only the intra-
modal components Tintra and Iintra, it naturally degenerates to an
embedding-based method. In parallel, the inter-modal components
Tinter and Iinter exploit the cross-modal attention, which are the
complementary residual components to further boost the discrimi-
nating capability of Tintra and Iintra.
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The intra-modal component of the image feature, Iintra, is ob-
tained from BERTimg. To be specific, given an image with a set of
region features R = {r1, · · · , r𝑀 }, we feed the regions features R
into BERTI to obtain the intra-modal attended region features:

R̂ = BERTimg (R) = {r̂1, · · · , r̂𝑀 }. (6)

The image feature’s intra-modal component is obtained by mean-
pooling the intra-modal attended region features:

Iintra =
1
𝑀

𝑀∑
𝑖=1

r̂𝑖 . (7)

In parallel, the intra-modal component of the text feature, Tintra, is
generated by BERTT. To be specific, given a text with a sequence
of token features T = [t1, · · · , t𝑁 ], we feed them into BERTtxt to
obtain the intra-modal attended token features:

T̂ = BERTtxt (T ) = [t̂1, · · · , t̂𝑁 ] . (8)

The text feature’s intra-modal component is obtained by mean-
pooling the intra-modal attended token features:

Tintra =
1
𝑁

𝑁∑
𝑖=1

t̂𝑖 . (9)

Meanwhile, the inter-modal component of the image feature
Iinter as well as that of the sentence feature Tinter is obtained from
a lightweight cross-attention encoder BERTcross. Compared with
BERTimg and BERTtxt, BERTcross containsmuch fewer Transformer
layers. In practical, using only 3 Transformer layers, BERTcross has
achieved competitive performance as the vanilla cross-modal BERT
with 12 Transformer layers. The region features from the image
and the token features from the text are concatenated together:

S = [R,T] = [r1, · · · , r𝑀 , t1, · · · , t𝑁 ] . (10)

BERTcross takes S as input and generates the inter-modal attended
region features and token features:

S̄ = BERTcross (S) = [r̄1, · · · , r̄𝑀 , t̄1, · · · , t̄𝑁 ] . (11)

The inter-modal component of the image feature is obtained by
mean-pooling the inter-modal attended region features:

Iinter =
1
𝑀

𝑀∑
𝑖=1

r𝑖 , (12)

Similarly, the inter-modal component of the text feature is:

Tinter =
1
𝑁

𝑁∑
𝑖=1

t𝑖 . (13)

To make the magnitude of Iinter, Iintra, Tinter, Tintra in a comparable
scale, we conduct ℓ2 normalization on them.

4.2 Two-stage Retrieval
First stage. The proposed U-BERT naturally supports a two-stage
retrieval process. To be specific, in the first stage, only the image’s
intra-modal component Iintra and the text’s intra-modal component
Tintra are used. The similarity between the image and the text is
determined by the cosine similarity between Iintra and Tintra. The
first stage follows the spirit of the embedding-based method. Since
Iintra and Tintra are only depended on the features from the single
modal, the first stage is very efficient. Given a text query, the most

𝐾 relevant images, {𝐼𝑘 }𝐾𝑘=1, are obtained based on the similarities
between their intra-modal features with the query’s intra-modal
feature. They will be re-ranked in the second stage.
Second stage.We conduct re-ranking on the retrieved 𝐾 images
{𝐼𝑘 }𝐾𝑘=1 in the second stage for higher retrieval accuracy. We reuse
the image’s intra-modal component Iintra and the text’s intra-modal
component Tintra. In addition, we obtain the inter-modal compo-
nents Tinter and Iinter as the complementary information to enhance
the discriminating capability of the intra-modal components. That
is, we sum Tintra and Tinter to obtain the enhanced text feature T
and sum up Iintra and Iinter to attain the enhanced image feature
I. Then the enhanced similarity between each image 𝐼𝑘 and the
text query 𝑇 is determined by the cosine similarity between their
enhanced features. After that, the retrieved images {𝐼𝑘 }𝐾𝑘=1 are
re-ranked based on the similarities based on the enhanced features.

4.3 Training
Recall that, in this first stage, the similarity between an image 𝐼
and a text is determined by the cosine similarity between their
intra-modal features:

𝑠1 (𝐼 ,𝑇 ) =
⟨Iintra,Tintra⟩
∥Iintra∥∥Tintra∥

. (14)

We optimize the text-image similarity in the first stage through
a batch-wise triplet loss. To be specific, each batch consists of 𝐵
ground-truth text-image pairs {(𝐼𝑖 ,𝑇𝑖 )}𝐵𝑖=1. Among them, an image
𝐼𝑖 is only relevant with the text 𝑇𝑖 and is irrelevant with other texts
𝑇𝑗 ( 𝑗 ≠ 𝑖). We obtain a 𝐵 × 𝐵 similarity matrices between 𝐵 images
and 𝐵 texts based on their intra-modal features as Eq. (14). Then
we construct a batch-wise triplet loss defined as

L1 =

𝐵∑
𝑖=1

∑
𝑗≠𝑖

{
[𝑠1 (𝐼𝑖 ,𝑇𝑗 ) − 𝑠1 (𝐼𝑖 ,𝑇𝑖 ) +𝑚]+

+ [𝑠1 (𝐼 𝑗 ,𝑇𝑖 ) − 𝑠1 (𝐼𝑖 ,𝑇𝑖 ) +𝑚]+
}
,

where𝑚 is a predefined margin. In parallel, in the second stage,
the image-text similarity is determined by the cosine similarity
between their enhanced features:

𝑠2 (𝐼 ,𝑇 ) =
⟨𝛼Iintra + Iinter, 𝛼Tintra + Tinter⟩
∥𝛼Iintra + Iinter∥∥𝛼Tintra + Tinter∥

. (15)

To optimize the text-image similarity in the second stage, we devise
another triplet loss L2 in the same manner as L1:

L2 =

𝐵∑
𝑖=1

∑
𝑗≠𝑖

{
[𝑠2 (𝐼𝑖 ,𝑇𝑗 ) − 𝑠2 (𝐼𝑖 ,𝑇𝑖 ) +𝑚]+

+ [𝑠2 (𝐼 𝑗 ,𝑇𝑖 ) − 𝑠2 (𝐼𝑖 ,𝑇𝑖 ) +𝑚]+
}
.

The whole training process consists of two steps. In the first step,
we only use L1 to optimize BERTimg and BERTtxt. In the sec-
ond step, BERTimg and BERTtxt are fixed. We only use L2 to up-
date BERTcross. An alternative solution is using a combined loss
L = L1 + L2 to updates BERTimg, BERTtxt and BERTcross simulta-
neously. Nevertheless, the performance of this alternative solution
is not as competitive as the two-step counterpart. We also conduct
hard-negative mining as VSE++ [7] in L1 and L2.
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5 EXPERIMENTS
Datasets. We conduct experiments on two public datasets, includ-
ing MSCOCO [29] and Flickr30K [55]. MS COCO contains 123, 287
images. Each image has five textual descriptions. It was divided
into 82, 783 training, 5, 000 validation, and 5, 000 testing samples.
Following [21], we move 30, 504 images in the validation split to the
training set. Experiments are conducted on both 1K and 5K testing
settings. The 1K testing settings contain 1, 000 images and 5, 000
texts. In the meanwhile, 5K testing settings contain 5, 000 images
and 25, 000 texts. The 1K settings are termed as MSCOCO1K, and
5K settings are termed as MSCOCO5K. Flickr30K consists of 31, 783
images from the Flickr website. Following [21], we split the dataset
into 29, 783 training samples, 1, 000 validation samples and 1, 000
testing samples. The cross-modal retrieval accuracy is evaluated by
image-to-text and text-to-image recall@K, which is the percentage
of ground-truth matchings appearing in the top K-ranked results.
Settings. For each image, we extract 32 bounding boxes using an
object detector, faster-RCNN [41], pretrained on Visual Genome
dataset [23] provided by [1]. Following Unicoder-VL [25], we set
the maximal token length as 44. We use the BERT-base model [6]
as the backbone for both BERTI and BERTT in our U-BERT model.
BERT-base model consists of 12 Transformer layers with 12 heads,
and the hidden size is 768. In contrast, BERTC in our U-BERT model
only contains two Transformer layers. Each Transformer layer is
with 12 heads, and the hidden size is 768 as well. The dropout ratio
in each Transformer layer is set as 0.1. The training is conducted
on a Linux server equipped with 4 NVIDIA V100 GPU cards. We
adopt the ADAM optimizer and utilize float16 operations supported
by the apex package to speed up the training and reduce the GPU
memory consumption. By default, we set the batch size as 216.
Besides, we will also report the measured retrieval latency in the
testing phase based on a single NVIDIA V100 GPU.

5.1 Text-to-Image Retrieval
In this section, we evaluate the performance of the proposed U-
BERT in text-to-image retrieval. For bothMSCOCO1K and Flickr30K
datasets, in the testing phase, they use 5, 000 text queries to retrieve
the relevant images from a corpus of 1, 000 sentences.
Comparisons with baselines. To demonstrate the effectiveness
and efficiency of the proposed U-BERT, we compare it with several
baselines. We first compare with the embedding-based baseline.
It is implemented by simply removing the BERTcross in U-BERT
and only retain the image encoder BERTimg and the text encoder
BERTtxt. Since the embedding-based baseline encodes the text and
image features individually, it is very efficient for retrieval. How-
ever, its retrieval accuracy is not competitive with cross-modal
BERT due to a lack of cross-modal attention. As shown in Table 1,
the embedding-based baseline only achieves a 59.9 text-to-image
(T2I) recall@1 on MSCOCO1K and a 51.6 text-to-image T2I re-
call@1 on Flickr30K. Then we compare U-BERT with the cross-
modal BERT, which adopts the same architecture as Unicode-VL
with 12 Transformer layers. Benefited from exploiting the cross-
modal attention, the cross-model baseline achieves high retrieval
accuracy at the cost of significant time consumption. As shown
in Table 1, the cross-modal BERT baseline achieves a 67.5 text-to-
image T2I recall@1 on MSCOCO1K dataset and a 59.9 T2I recall@1

Table 1: Comparisons with baseline methods in the text-to-
image retrieval task on MSCOCO1K and Flickr30K datasets.

Method MSCOCO1K R@ Flickr30K R@ Latency1 5 10 1 5 10
Embed 59.9 89.1 94.6 51.6 80.2 87.9 6s
Cross 67.5 91.9 96.9 59.9 85.2 90.8 4832s

Two-stage 67.3 91.8 96.6 59.8 85.1 90.6 102s
U-BERT 67.1 91.5 96.2 59.5 85.0 90.6 31s

on Flickr30K dataset, which are higher than the accuracy achieved
by the joint-embedding baseline. But it takes a higher latency than
the embedding-based baseline in the retrieval.

Then we compare U-BERT with the two-stage baseline. In the
first stage, it adopts the embedding-based method to get an initial
ranking list. Then in the second stage, it re-ranks the top 20 retrieved
images using the cross-modal BERT with 12 Transformer layers. As
shown in Table 1, by exploiting the trade-off between the efficiency
and the accuracy, the two-stage baseline achieves higher accuracy
than the embedding-based baseline and higher efficiency than the
cross-modal BERT baseline. It achieves comparable accuracy with
the cross-modal BERT baseline and meanwhile takes much less
latency. Our U-BERT also takes the two-stage retrieval strategy. In
the first stage, U-BERT only uses the intra-modal components in
the image and text features, equivalent to the embedding-based
baseline. In the second stage, U-BERT re-ranks the retrieved top
20 retrieved images from the first stage by considering the multi-
modal components of the image features and the text features. Note
that BERTC used in U-BERT only contains 3 Transformer layers,
whereas the cross-modal BERT used in the two-stage baseline con-
tains 12 Transformer layers. Thus, our U-BERT is more efficient
than the two-stage baseline. As shown in Table 1, our U-BERT only
takes 31 seconds latency, which achieves an around 3.3× speed-up
ratio over the two-stage baseline.

Table 2: Influence of the number of retrieved items for re-
ranking (𝐾) on text-to-image retrieval.

𝐾
MSCOCO1K R@ Flickr30K R@ Latency1 5 10 1 5 10

5 66.9 89.1 94.6 59.1 80.2 87.9 12s
10 67.1 91.0 94.6 59.7 84.2 87.9 19s
20 67.1 91.5 96.2 59.5 85.0 90.6 31s

1000 67.0 91.8 96.7 59.6 84.9 90.6 1219s

Influence of 𝐾 . As shown in Table 2, we evaluate the influence of
the number of retrieved items for retrieval, 𝐾 . We change 𝐾 among
{5, 10, 20, 1000}. Since MSCOCO1K and Flickr30K datasets contain
only 1000 images in the testing split, when𝐾 = 1000, it is equivalent
to re-ranking the whole testing split. Intuitively, as 𝐾 increases,
more images will be re-ranked, bringing higher retrieval accuracy.
Meanwhile, more images involved in the re-ranking phase will
bring more computational cost as well. As shown in Table 2, when
𝐾 = 5, the proposed U-BERT has achieved satisfied R@1 on both
MSCOCO1K and Flickr30K datasets. But it does not influence the
recall@5 and recall@10 when 𝐾 = 5 since the re-ranking is only
conducted on the top 5 retrieved images. To boost recall@10, 𝐾
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should be larger than 10. As shown in Table 2, when 𝐾 = 20, it
achieves competitive R@5 and R@10 as that when 𝐾 = 1000. By
default, we set 𝐾 = 20.
Influence of 𝐿𝑐 . We evaluate the influence of 𝐿𝑐 , the number of
Transformer layers in BERTcross, on the retrieval accuracy. Straight-
forwardly, more Transformer layers will lead to higher capability
of modeling the text-image relevance. Note that BERTcross only
serves to generate the complementary residues, Tinter and Iinter to
enhance the intra-modal image and text features Tintra and Iintra .
Since Tintra and Iintra have already been empowered the capability
to model the text-image relevance, we do not need to devise a heavy
BERTcross. In fact, a lightweight BERTcross is enough to achieve an
excellent accuracy. As shown in Table 3, when 𝐿𝑐 increases from 1
to 3, the retrieval accuracy increases considerably. But the accuracy
saturates as 𝐿𝑐 surpasses 3. Taking both accuracy and efficiency
into consideration, we set 𝐿𝑐 = 3 by default.

Table 3: Influence of the number of Transformer layers in
BERTC (𝐿C) on text-to-image retrieval.

𝐿C
MSCOCO1K R@ Flickr30K R@ Latency1 5 10 1 5 10

1 64.0 90.8 95.9 56.3 82.9 89.3 14s
2 66.4 91.5 96.2 57.0 84.3 89.9 23s
3 67.1 91.5 96.2 59.5 85.0 90.6 31s
12 67.0 91.7 96.1 59.7 85.1 90.6 108s

5.2 Image-to-Text Retrieval
We evaluate the retrieval recall and latency time of our U-BERT
in the image-to-text retrieval. For both MSCOCO1K and Flickr30K
datasets, in the testing phase, they use 1, 000 image queries to
retrieve the relevant texts from a corpus of 5, 000 sentences.
Comparisons with baselines. We first compare U-BERT with
the joint-embedding baseline. Due to a lack of cross-modal atten-
tion, the joint-embedding baseline might not achieve a competitive
retrieval accuracy.

Table 4: Comparisons with baseline methods in the image-
to-text retrieval task onMSCOCO1K and Flickr30K datasets.

Method MSCOCO1K R@ Flickr30K R@ Latency1 5 10 1 5 10
Embed 74.1 94.0 97.5 66.2 87.7 92.9 6s
Cross 79.7 97.2 98.7 76.0 94.4 96.6 4832s

Two-stage 79.6 97.0 98.6 75.5 94.6 97.1 105s
U-BERT 79.1 97.0 98.6 75.6 94.1 96.7 33s

As shown in Table 4, the embedding-based baseline (E) only
achieves a 74.1 recall@1 onMSCOCO1K dataset and a 66.2 recall@1
on Flickr30K dataset. Then we compare U-BERT with the cross-
modal BERT baseline with 12 Transformer layers. By exploiting
the cross-modal attention, the cross-modal BERT baseline achieves
high retrieval accuracy. However, it takes quadratic computational
complexity, which is prohibitively slow for real applications. As
shown in Table 4, the cross-modal BERT baseline achieves a 79.7
recall@1 on MSCOCO1K dataset and a 76.0 recall@1 on Flickr30K

dataset. Nevertheless, the cross-modal BERT baseline takes 4832 sec-
onds latency, much slower than the embedding-based baseline with
only 6 seconds. Then we compare with the two-stage baseline. As
shown in Table 4, by exploiting the trade-off between accuracy and
efficiency, the two-stage baseline achieves a comparable accuracy
with the cross-modal BERT baseline with only 105 seconds latency.
Meanwhile, our U-BERT also takes the two-stage retrieval strategy.
Due to using a light-weight BERTcross, the proposed U-BERT is
considerably faster than the two-stage baseline and maintains a
high retrieval accuracy as shown in Table 4.

Influence of 𝐾 . We vary 𝐾 among {25, 50, 100, 5000}. Since the
testing split only contains 5000 texts in MSCOCO-1K and Flickr30K
datasets,𝐾 = 5000 is equivalent to re-ranking all texts in the corpus.
Intuitively, as𝐾 increases, more texts will be involved in re-ranking,
which tends to lead to higher retrieval recall but brings more com-
putational cost in the re-ranking stage.

Table 5: Influence of the number of retrieved items for re-
ranking (𝐾) on image-to-text retrieval.

𝐾
MSCOCO1K R@ Flickr30K R@ Latency1 5 10 1 5 10

25 79.1 97.0 98.4 75.0 93.0 95.4 13s
50 79.1 97.1 98.5 75.5 93.3 96.4 20s
100 79.1 97.0 98.6 75.6 94.1 96.7 33s
5000 79.1 96.9 98.6 75.2 94.2 96.8 1219s

As shown in Table 5, when 𝐾 = 25, on MSCOCO1K dataset, it
has achieved competitive retrieval accuracy as that when 𝐾 = 5000.
In contrast, on Flickr30K dataset, only when 𝐾 increases to 100, it
achieves a comparable retrieval as that when 𝐾 = 5000. By default,
we set 𝐾 = 100 on both MSCOCO1K and Flickr30K datasets in the
image-to-text retrieval task. Note that, in the text-to-image retrieval
task, we only set 𝑘 = 20. That is, the value of 𝐾 in the image-to-text
retrieval task is 5× as that used in the text-to-image task. This is in
accord with the fact that, in the testing split, the total number of
texts is 5× as the total number of images.

Table 6: Influence of the number of Transformer layers in
BERTcross (𝐿c) in the image-to-text retrieval task.

𝐿c
MSCOCO1K R@ Flickr30K R@ Latency1 5 10 1 5 10

1 76.4 96.1 98.3 70.4 91.6 96.0 15s
2 78.5 96.8 98.5 72.3 92.6 95.3 24s
3 79.1 97.0 98.6 75.6 94.1 96.7 33s
12 79.3 97.1 98.7 75.9 94.3 96.9 114s

Influence of 𝐿𝑐 .As shown in Table 6, when 𝐿𝑐 increases from 1 to 3,
the retrieval accuracy increases considerably. For instance, using a
single layer, 𝐿𝑐 = 1, it only achieves a 76.4 recall@1 on MSCOCO1K
benchmark and a 70.4 recall@1 on Flickr30K benchmark. When 𝐿𝑐
increases to 3, it achieves a 79.1 recall@1 on MSCOCO1K bench-
mark and a 75.6 recall@1 on Flickr30K benchmark. Meanwhile,
the retrieval latency also increases from 15 seconds to 33 seconds.
Moreover, the accuracy saturates as 𝐿𝑐 surpasses 3. Considering
both efficiency and effectiveness, we set 𝐿𝑐 = 3 by default. It is the
same as that used in the T2I retrieval task.
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5.3 Pretraining
Pretraining on large-scale datasets can enhance the performance
of cross-modal BERT methods [4, 25, 28]. Cross-modal BERT meth-
ods devise multiple pretraining tasks, including masked language
modeling (MLM), masked region modeling (MRM), and text-image
matching. We also investigate the influence of pretraining on the
performance of the proposed U-BERT in cross-modal retrieval. Note
that the above-mentioned retrieval recall is from the proposed U-
BERT without pretraining. Following Unicoder-VL, we utilize two
public datasets, SBU Captions [39] and Conceptual Captions [43]
to pretrain the proposed U-BERT. Since U-BERT focuses on cross-
modal retrieval, we only adopt the triplet loss L1 and L2 (in Sec-
tion 4.3) for pretraining. Afterwards, we finetune the pretrained
U-BERT on target datasets, i.e., MSCOCO1K and Flickr30K.

Table 7: Influence of pre-training on the text-to-image (T2I)
retrieval task and the image-to-text (I2T) retrieval task.

Task Pretrain MSCOCO1K R@ Flickr30K R@
1 5 10 1 5 10

T2I 67.1 91.5 96.2 59.5 85.0 90.6
T2I ✓ 69.8 92.6 97.0 66.4 89.0 93.3
I2T 79.1 97.0 98.6 75.6 94.1 96.7
I2T ✓ 83.8 97.5 98.9 81.2 96.0 98.1

As shown in Table 7, pretraining considerably improves the
performance of our U-BERT on both T2I and I2T retrieval tasks.
Specifically, for the T2I retrieval task, pretraining improves the
recall@1 from 67.1 to 69.8 on MSCOCO1K dataset and from 59.5
to 66.4 on the Flickr30K dataset. Meanwhile, on I2T retrieval task,
pretraining improves the recall@1 from 79.1 to 83.8 on MSCOCO1K
dataset and from 75.6 to 81.2 on Flickr30K dataset.

5.4 MSCOCO5K
To further demonstrate the effectiveness and efficiency of the pro-
posed U-BERT, we test it on a larger testing split, MSCOCO5K.
It has the same training split as the MSCOCO1K benchmark but
contains 5, 000 images and 25, 000 texts for testing. The scale of the
MSCOCO5K testing split is as 5 times as that of the MSCOCO1K
testing split. As shown in Table 8, on the MSCOCO5K testing split,
the embedding-based baseline cannot achieve a competitive re-
trieval recall as the cross-modal BERT baseline and our U-BERT.
To be specific, in the text-to-image retrieval task, the embedding-
based baseline only achieves a 39.4 recall@1, whereas our U-BERT
achieves a 46.2 recall@1. In the image-to-text retrieval task, the
embedding-based baseline obtains a 52.6 recall@1 but our U-BERT
achieves a 62.2 recall@1. In the meanwhile, our U-BERT achieves a

Table 8: Comparisons among the embedding-based baseline,
cross-modal BERT and U-BERT on MSCOCO5K.

Method T2I R@ I2T R@ Latency
T2I/I2T1 5 10 1 5 10

Embed 39.4 70.1 80.8 52.6 81.6 89.0 29s/29s
Cross 46.0 75.0 84.8 62.4 86.6 92.4 34h/34h

U-BERT 46.2 75.1 84.8 62.2 86.6 92.8 2.5m/2.5m

comparable retrieval recall as cross-modal BERT but takes much
less latency in the retrieval. To be specific, cross-modal BERT takes
around 34 hours (h), whereas our U-BERT only takes approximately
2.5 minutes (m). That is, our U-BERT achieves an around 780×
speed-up ratio over the cross-modal BERT baseline.

5.5 Comparisons with State-of-the-art Methods

We compare our U-BERT with three types of methods, including
embedding-based methods, cross-attention methods, and fast cross-
attention methods. Embedding-based methods we compare include
VSE++ [7], PSVE [44], SCO [17] and TIMAM [42] and ALIGN [18].
They are very fast in retrieval. Except for ALIGN, they cannot
achieve competitive retrieval accuracy as cross-attention meth-
ods as shown in Table 9. To be specific, the best embedding-based
method, TIMAM only achieves a 43.6 T2I R@1 on Flickr30K dataset,
which is outperformed by one of the earliest cross-attention meth-
ods, SCAN [24]. It is worth noting that the excellence of ALIGN is
owing to being pretrained on a huge dataset of 1.8 billion text-image
pairs. Thus, it is unfair to directly compare it with other methods
which are only pre-trained on SBU Captions and Conceptual Cap-
tions datasets with only 3 million text-image pairs.

Then we compare U-BERT with several cross-attention meth-
ods. We divide them into two groups. The first group of methods
simply adopt the soft-attention operation, self-attention operation,
or graph convolution to exploit the cross-modal attention includ-
ing SCAN [24], ACMM [15], VSRN [26], IMRAM [3], CSVE [50],
and MMnas [64]. Benefited from exploiting the cross-modal atten-
tion, they achieve higher retrieval accuracy than embedding-based
methods at the cost of quadratic computational cost. The second
group of methods include Uni-VL [25], UNITER [25], OSCAR [28],
VILLA [10], UNIMO [27] and ERNIE-ViL [56]. Inspired by the suc-
cess of BERT, they exploit not only cross-modal attention but also
devise several pre-training tasks for improving accuracy. As shown
in Table 9, these methods significantly outperforms the embedding-
based methods and achieve state-of-the-art cross-modal retrieval
accuracy. Nevertheless, as we mentioned previously, in the real
large-scale retrieval scenario, they are prohibitively slow due to
quadratic computational complexity.

At last, we compare our U-BERT with two-stage methods in-
cluding LigDOT [47] and COoscar [11]. By exploiting the trade-off
between efficiency and accuracy, they achieve higher retrieval speed
and comparable retrieval accuracy as cross-modal BERT methods.
As shown in Table 9, our U-BERT cannot achieve as high accuracy
as LigDOT [47] and COoscar [11]. The higher accuracies of Lig-
DOT [47] and COoscar [11] are mainly owing to the fact that they
additionally exploit the tags as OSCAR, whereas we only use the
bounding box features from the object detector. But our U-BERT
achieves higher efficiency than LightningDOT [47] and COoscar [11].
To be specific, LightningDOT [47] only achieves a 48× speed-up
ratio over the cross-modal BERT on Flickr30K dataset. In contrast,
our U-BERT achieves a 130× speed-up ratio. Note that, both Light-
ningDOT [47] and COoscar [11] outperform our U-BERT. This is
due to the fact that they use a much better cross-modal BERT in
the re-ranking phase than ours. Specifically, the re-ranking model
used in LightningDOT is UNITER or OSCAR pretrained on sev-
eral large-scale datasets with multiple devised pretraining tasks. In
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Table 9: Comparisons with state-of-the-artmethods.We compare the proposed U-BERTmodel with embedding-based (Embed)
methods, cross-modal BERT (Cross) methods and two-stage (Two) methods.

Method Type
MSCOCO1K Flickr30K MSCOCO5K

T2I R@ I2T R@ T2I R@ I2T R@ T2I R@ I2T R@
1 5 10 1 5 10 1 5 10 1 5 10 1 5 10 1 5 10

VSE++ [7] Embed 52.0 83.1 92.0 64.6 89.1 95.7 39.6 70.1 79.5 52.9 80.5 87.2 30.3 59.1 72.4 41.3 69.2 81.2
PSVE [44] Embed 55.2 86.5 93.7 69.2 91.6 96.6 − − − − − − 32.4 63.0 75.0 45.2 74.3 84.5
SCO [17] Embed 56.7 87.5 94.8 69.9 92.9 97.5 41.1 70.5 81.1 55.5 82.0 89.3 33.1 62.9 75.5 42.8 72.3 83.0

TIMAM [42] Embed − − − − − − 42.6 71.6 81.9 53.1 78.8 87.6 − − − − − −
ALIGN [18] Embed − − − − − − 84.9 97.4 98.6 95.3 99.8 100.0 59.9 83.3 89.8 77.0 93.5 96.9
SCAN [24] Cross 58.8 89.0 93.1 72.7 94.8 98.4 48.6 77.7 85.2 67.4 90.3 95.8 34.4 63.7 75.7 46.4 77.4 87.2
ACMM [15] Cross 58.2 87.3 93.9 81.9 98.0 99.3 50.2 76.8 84.7 80.0 95.5 98.2 36.7 65.1 76.7 63.5 88.0 93.6
VSRN [26] Cross 62.8 89.7 95.1 76.2 94.8 98.2 54.7 81.8 88.2 71.3 90.6 96.0 40.5 70.6 81.1 53.0 81.1 89.4
MMCA [53] Cross 61.6 89.8 95.2 74.8 95.6 97.7 54.8 81.4 87.8 74.2 92.8 96.4 38.7 69.7 80.8 54.0 82.5 90.7
IMRAM [3] Cross 61.7 89.1 95.0 76.7 95.6 98.5 53.9 79.4 87.2 74.1 93.0 96.6 39.7 69.1 79.8 53.7 83.2 91.0
CSVE [50] Cross 59.9 89.4 95.2 74.8 95.1 98.3 52.9 80.4 87.8 73.5 92.1 95.8 − − − − − −
MMnas [64] Cross − − − − − − 60.7 85.1 90.5 78.3 94.6 97.4 − − − − − −
VSparta [34] Cross 68.2 91.8 96.3 − − − 57.4 82.0 88.1 − − − 44.4 72.8 82.4 − − −
Uni-VL [25] Cross 69.7 93.5 97.2 84.3 97.3 99.3 71.5 90.9 94.9 86.2 96.3 99.0 46.7 76.0 85.3 62.3 87.1 92.8

ERNIE-ViL [56] Cross − − − − − − 74.4 92.7 95.9 86.7 97.8 99.0 − − − − − −
UNIMO [27] Cross − − − − − − 74.6 93.4 96.0 89.7 98.4 99.1 − − − − − −
ViLT [22] Cross − − − − − − 61.9 86.8 92.8 81.4 95.6 97.6 41.3 72.0 82.5 61.8 86.2 92.6

UNITER [25] Cross − − − − − − 72.5 92.3 95.9 85.9 97.1 98.8 50.3 78.5 87.2 64.4 87.4 93.1
OSCAR [28] Cross 75.7 95.2 98.3 88.4 99.1 99.8 − − − − − − 57.5 82.8 89.8 73.5 92.2 96.0
VILLA [10] Cross − − − − − − 74.7 92.9 95.8 86.6 97.9 99.2 − − − − − −
LigDOT [47] Two − − − − − − 72.6 93.1 96.1 86.5 97.5 98.9 57.4 82.7 89.9 74.2 92.4 96.0
COoscar [11] Two − − − − − − 76.4 93.6 96.2 89.4 97.7 99.0 54.7 81.3 88.9 70.8 91.0 95.2
U-BERT Ours 69.8 92.6 97.0 83.8 97.5 98.9 66.4 89.0 93.3 81.2 96.0 98.1 46.2 75.1 84.8 62.2 86.6 92.8

Table 10: Comparisons with LightningDOT [47] and
COoscar [11] on latency time.

Method MSCOCO1K MSCOCO5K
LightningDOT [47]/COoscar [11] 21s 16m

U-BERT (ours) 3.3s 2.5m

the meanwhile, the re-ranking model used in COoscar [11] is OS-
CAR [28] which exploits the additional tags besides the visual fea-
tures. In contrast, our U-BERT is only pretrained on SBU Captions
and Conceptual Captions datasets. Meanwhile, we do not exploit
the tags used in OSCAR. We also compare latency time with Light-
ningDOT [47] and COoscar [11] on MSCOCO1K and MSCOCO5K
datasets and the results are in Table 10. Since LightningDOT and
COoscar adopt the same architecture, we merge them in the table.
As shown in the table, LightningDOT/COoscar takes 21 seconds
on MSCOCO1K and 16 minutes on MSCOCO5K. In contrast, our
U-BERT only takes 3.3 seconds on MSCOCO1K and 2.5 minutes on
MSCOCO5K. That is, our U-BERT achieves an around 6× speed-
up ratio over the compared LightningDOT/COoscar model. The
faster inference time of U-BERT is because our U-BERT only stacks
3 Transformer layers for re-ranking whereas LightningDOT and
COoscar adopt 12 Transformer layers for re-ranking. Meanwhile,
the OSCAR model used in LightningDOT and COoscar additionally
takes bounding box labels as input, leading to a longer input se-
quence than our U-BERT without exploiting bounding box labels.

The significant efficiency improvement can considerably improve
the user experience in practical applications.

6 CONCLUSION
In this work, we propose a U-BERT for fast and scalable text-image
retrieval in practical applications. It decomposes the text as well as
image feature into an intra-modal component and an inter-modal
component. The intra-modal component of the text feature and
the image feature is obtained from the text/image encoder exploit-
ing single-modality features. They follow the spirit of the global
feature used in the embedding-based method and thus support effi-
cient cross-modal retrieval. Meanwhile, the inter-modal component
of the text and image features is obtained by exploiting the cross-
modal attention on the features from both image and text modalities.
They serve as the complementary residue to enhance the discrimi-
nating power of the intra-modal components. U-BERT is deployed
in a two-stage retrieval pipeline. In the first stage, only the intra-
modal components are utilized to retrieve a small set of relevant
candidates for re-ranking efficiently. In the second stage, we com-
pute the inter-modal components for the retrieved candidates for a
higher retrieval accuracy. Benefited from the two-stage configura-
tion, our U-BERT is faster and more scalable than the mainstream
cross-modal BERT methods. Systematic experiments conducted on
three public benchmarks including MSCOCO1K, MSCOCO5K, and
Flickr30K demonstrate the high effectiveness and efficiency of the
proposed U-BERT model.
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