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ABSTRACT
Recommendation systems are an integral component of machine

learning, wherein collaborative filtering (CF) is among the most

prominent algorithms employed. Recently, variational auto-encoders

(VAEs) with multinomial likelihood and weighted Kullback-Leibler

(KL) regularization (referred to as Mult-VAE) provide state-of-the-

art performance for collaborative filtering of binary data. To gain

deeper insight into the objective function of Mult-VAE, we build

a connection between the reconstruction term of Mult-VAE ob-

jective and the objective function of the probabilistic 𝑛-Choose-𝑘

model for ranking prediction. In particular, we theoretically demon-

strate that the negative reconstruction error of Mult-VAE is a lower

bound to the log-likelihood of the binary 𝑛-Choose-𝑘 model. Hence,

Mult-VAE can be interpreted as an approximate proxy to the 𝑛-

Choose-𝑘 model. We also empirically show the essential role of

this reconstruction term of evidence lower bound in the context

of collaborative filtering on multiple real-world datasets. Finally,

inspired by the role of the weighted KL term in maximizing mutual

information between observed ratings and latent variables, we pro-

pose a semi-implicit VAE framework with superior performance in

terms of ranking metrics.

CCS CONCEPTS
•Computingmethodologies→ Learning latent representations; •
Information systems → Collaborative filtering; • Theory of
computation → Models of learning.
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Recommendation systems, Variational auto-encoders, collaborative
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1 INTRODUCTION
Recommender systems have been widely adopted by many online

services, including E-commerce [44], streaming services [15], and

social media sites [36]. The goal of a recommendation system is to

show users a set of previously unseen items that are likely to be

of interest to them. Collaborative filtering (CF) is among the most

prominent algorithms employed in recommendation systems [18].

he basic ideas of CF have been integrated into massive-scale click-

through rate (CTR) prediction deep learning models in commercial

search engines [9, 11, 52, 59]. CF methods predict user preferences

by discovering similarity patterns across users and items.

Many CF methods rely on latent factor models for prediction of

user-item interactions [21, 24, 41]. As an example, methods based

on matrix factorization are among some of the most successful re-

alizations of latent factor models for CF [22, 23, 30? ]. The linear
nature of such methods, however, may restrict their modeling ca-

pacity, therefore a growing body of work applies neural networks

in the CF context [17, 50, 55].

Recently, variational auto-encoders (VAEs) [29, 39, 51] have been

used to produce state-of-the-art results in the CF setting [34]. The

objective function of VAE, known as evidence lower bound (ELBO),

consists of two terms; reconstruction error or distortion term, and

the KL-regularization term. In particular, VAEs are attractive for

settings with large-scale datasets, as they amortize the inference

by employing encoder networks. In practice, many user-item in-

teractions are only inferred implicitly, and thus encoded as binary

matrices. Liang et al. [34] develop a VAE based method with multi-

nomial likelihood, Mult-VAE, and achieve state-of-the-art perfor-

mance on several real-world binary CF datasets. In addition to

employing multinomial likelihood, another essential step in mak-

ing Mult-VAE [34] perform well in the CF problem is KL annealing,

where the weight of the Kullback-Leibler (KL) regularization in

the objective function of VAE is adjusted based on the validation

data to allow for learning more informative latent representations.

In fact, this is a well known problem of the VAE, referred to as

latent variable collapse [7], where powerful likelihood models lead

to good generative models, while lacking useful latent representa-

tions [2, 58].

In this paper, we shed light on the use of multinomial likelihood

by establishing a connection between the objective function of

Mult-VAE and that of a probabilistic model for ranking, known

as 𝑛-Choose-𝑘 model [46]. More precisely, 𝑛-Choose-𝑘 model is a

probabilistic framework developed for multi-class recognition and

ordinal regression problems. Swersky et al. [46] show that opti-

mal decision theoretic predictions under the 𝑛-Choose-𝑘 model for
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monotonic gain functions such as normalized discounted cumula-

tive gain (NDCG) can be achieved by a simple sorting operation.

We demonstrate both theoretically and empirically that the neg-

ative reconstruction error of Mult-VAE [34] is a lower bound to

the log-likelihood of the binary 𝑛-Choose-𝑘 model. Hence, Mult-

VAE can be interpreted as an approximate proxy to the 𝑛-Choose-𝑘

model [46], whose optimization in large-scale settings is intractable.

This view is further approved, as our empirical experiments show

that discarding the KL term completely leads only to a slight de-

crease in the performance of Mult-VAE, and equivalently the domi-

nating role of the reconstruction term in achieving a good perfor-

mance in ranking prediction.

Finally, to improve the performance of VAE for collaborative

filtering, we proposed a new extension based on semi-implicit VAE

framework [53]. More specifically, we use a reparameterizable im-

plicit distribution as a mixing distribution to effectively expand

the richness of the variational family. In particular, semi-implicit

VAE employs a hierarchical encoder that injects random noise at

different stochastic layers. This added noise, with skip connections

to input data in the encoder architecture, leads to increasing the

mutual information between latent variables and observed data,

and thus better performance in predicting the missing ratings.

Overall, the contributions of our work are as follows:

• We show that the negative reconstruction term in the evi-

dence lower bound (ELBO) of Mult-VAE is a lower bound

approximation for the log-likelihood of the binary 𝑛-Choose-

𝑘 model, and thus attribute the reconstruction term as a

key factor in determining the performance of Mult-VAE for

collaborative filtering.

• We empirically demonstrate the essential role of the recon-

struction term on several real-world datasets.

• We propose a semi-implicit VAE based model to improve the

performance in collaborative filtering.

The remainder of this paper is as follows. Section 2 introduces

neural network based collaborative filtering models and variational

auto-encoders. Section 3 first provides a brief review of VAE and

Mult-VAE for collaborative filtering, then presents the main theo-

retical contribution of our work. Experimental studies verifying the

theories are demonstrated in section 4, in which we also discuss

an additional direction, parameterized dropouts, as another poten-

tial way for improving the performance of VAEs for collaborative

filtering. We conclude the paper with the main insights in section 5.

2 RELATEDWORKS
Before neural network based models prevailing, matrix factoriza-

tion [22, 23, 31] is the most widely used method for Collaborative

filtering. It uses an inner product of the user-itemmatrix to quantify

user-item interactions. Some model specifications further include

global user/item biases and/or regularization terms to prevent over-

fitting. An advanced extension is the use of Gaussian Markov Ran-

dom Field (MRF) to model the dependency among items [45], which

leveraged sparse inverse covariance estimation with autoencoders

and neighborhood models. Since our focus is on deep generative

model based CF, we do not cover them in details.

Different from matrix factorization based approaches, neural

Collaborative Filtering(NCF) replaces the user-item inner product

with a neural architecture. Neural-network-based collaborative

filtering models started by focusing on explicit feedback data [13,

42, 43, 54, 56], and gradually shifted attention to implicit feedback

data [34, 56]. For instance, collaborative denoising auto-encoder

(CDAE) [50] augments the standard denoising auto-encoder by

adding a per-user latent factor to the input. A disadvantage of

CDAE, compared to VAE, is that the number of its model parameters

grows linearly with the number of users as well as items, making it

more prone to over-fitting. Furthermore, in the testing phase, CDAE

requires additional optimization to learn the latent representation

of unseen users. Neural collaborative filtering (NCF) [17] presents

a model with non-linear interactions between the user and item

latent factors rather than the commonly used dot product. Similar

to CDAE, the number of parameters of NCF grows linearly with

both the number of users and items, and thus making it problematic

to apply NCF to large datasets.

Meanwhile, variational auto-encoders [29, 39, 51] are widely

applied to image [8] and text data [35]. Despite being able to cap-

ture complex distributions, vanilla variational auto-encoders under-

perform their counterparts when used for collaborative filtering.

This can be associated with latent variable collapse phenomenon,

i.e., the variational posterior is independent of data [7]. This col-

lapse happens as minimizing the KL term in the ELBO leads to a

degenerate solution, where 𝑞𝜙 (𝒛 |𝒙) ≈ 𝑝 (𝒛), 𝑥 is the input, 𝑧 is the

latent variable and 𝜙 are encoder parameters.

Many recent works based on VAEs have attempted to allevi-

ate this problem by maximizing the mutual information between

observed and latent variables [1, 7, 20, 57]. In particular, as re-

weighting the KL term in the ELBO with small weights is associated

with maximizing the mutual information between observations and

latent representations [58], [34] were first to use this intuition to

improve the performance of VAE for collaborative filtering. As

it has been only recently to be used in the context of collabora-

tive filtering, to the best of our knowledge this paper is the only

work pointing out the relationship between VAE and the probabilis-

tic 𝑛-Choose-𝑘 model. Meanwhile, several efforts integrated VAEs

with other well-known neural models to better fit in the collabo-

rative setting. For example, aWAE [56] extended the Wasserstein

autoencoders [47] in the collaborative filtering problem to tack the

overlapping issues in the distributions of latent variables of the

encoder. VAEGAN [54] combined VAE and Generative Adversarial

Network (GAN) to better approximation to the posterior. However,

as illustrated in Rosca et al. [40], such VAE-GAN hybrid models are

harder to scale, evaluate, and use for inference compared to VAEs.

3 METHOD
In this section, we first present a brief background on VAEs, then

describe how they are successfully applied in the context of collab-

orative filtering. The connection between the reconstruction term

of VAE with multinomial likelihood and the binary 𝑛-Choose-𝑘

model is then discussed in detail. Motivated by the insights from

these analysis, we introduce our proposed semi-implicit VAE for

collaborative filtering.
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3.1 Variational Auto-Encoder
Let 𝒙 ∈ R𝐼 be a vector of 𝐼 observable variables and 𝒛 ∈ R𝐾 a vector

of stochastic latent variables, where usually in practice we have

𝐾 << 𝐼 , to obtain useful low-dimensional latent representations.

A variational auto-encoder (VAE) [29, 39] binds together modeling

and inference, where the model is a parametric joint distribution of

observed and latent variables,

𝑝𝜃 (𝒙, 𝒛) = 𝑝𝜃 (𝒙 |𝒛)𝑝 (𝒛),

where 𝑝𝜃 (𝒙 |𝒛) is the generative model (the decoder), typically con-

structed using a neural network with parameters 𝜃 , and 𝑝 (𝒛) is the
prior distribution on the latent representations.

Given observed data D = {𝒙1, ..., 𝒙𝑁 }, the model parameters 𝜃

are learned by maximizing the marginal likelihood of the observa-

tions,

𝜃∗ = argmax

𝜃
E𝒙∼𝑝D (𝒙)

[
log 𝑝𝜃 (𝒙)

]
= argmax

𝜃

1

𝑁

𝑁∑
𝑖=1

log

∫
𝑝𝜃 (𝒙𝑖 , 𝒛𝑖 )𝑑𝒛𝑖 ,

where 𝑝D (𝒙) = 1

𝑁

∑𝑁
𝑖=1 𝛿 (𝒙 − 𝒙𝑖 ) is the empirical distribution of

the observed data. Performing this optimization is difficult in prac-

tice, as each term of the objective function contains an integral that

is intractable most of the time. To overcome this issue, VAEs rely

on amortized variational inference to approximate the optimiza-

tion. More precisely, the evidence lower bound (ELBO) is used as a

surrogate objective function,

L(𝜃, 𝜙) := E𝒙∼𝑝D (𝒙)
[
E𝒛∼𝑞𝜙 (𝒛 |𝒙)

[
log

𝑝𝜃 (𝒙, 𝒛)
𝑞𝜙 (𝒛 |𝒙)

] ]
≤ E𝒙∼𝑝D (𝒙)

[
log𝑝𝜃 (𝒙)

]
, (1)

where 𝑞𝜙 (𝒛 |𝒙) is the data-dependent variational posterior (the en-
coder), usually constructed using a neural network with parameters

𝜙 . The set of model parameters {𝜃, 𝜙} are then jointly learned using

stochastic gradient optimization methods [29, 39].

3.2 VAE for Collaborative Filtering
In the context of binary collaborative filtering, data is in the form of

user-by-item interaction matrix 𝑿 ∈ {0, 1}𝑈×𝐼
, where 𝑈 and 𝐼 are

number of users and items, respectively. In this work, we consider

collaborative filtering with implicit feedback [24]. Specifically, the

entry 𝑥𝑢𝑖 of the interaction matrix equals one, when user 𝑢 has

interacted with item 𝑖 , for example the user has clicked on a content

related to the item, and zero when no interaction has been observed.

Liang et al. [34] propose Mult-VAE, an extension of the VAE

framework with multinomial likelihood for collaborative filtering

with implicit feedback. Specifically, for each user 𝑢, the generative

process of Mult-VAE starts by sampling a 𝐾-dimensional latent

representation 𝒛𝑢 from a standard multivariate Gaussian prior,

𝒛𝑢 ∼ N(0, 𝑰𝐾 ) .

The latent representation 𝒛𝑢 is then transformed via a non-linear

function, e.g. a multi-layer perceptron (MLP) combined with a

softmax function, to produce a probability distribution 𝜋 (𝒛𝑢 ) over
different items. Finally, the observed interactions for user 𝑢, 𝒙𝑢 , are

generated using a multinomial likelihood,

𝒙𝑢 ∼ Mult

(
𝑁𝑢 , 𝜋 (𝒛𝑢 )

)
, (2)

where 𝑁𝑢 is the number of items which user 𝑢 has interaction with.

To learn the latent representation of users in Mult-VAE, similar

to Gaussian VAE [29, 39], data-dependent variational distributions

over latent variables 𝒛𝑢 are employed,

𝑞𝜙 (𝒛𝑢 |𝒙𝑢 ) = N
(
𝜇𝜙 (𝒙𝑢 ), diag{𝜎2𝜙 (𝒙𝑢 )}

)
, (3)

where 𝜇𝜙 (𝒙𝑢 ) and 𝜎𝜙 (𝒙𝑢 ) are non-linear transformations of the

observed data, e.g. achieved by a MLP block.

To learn the model parameters {𝜃, 𝜙}, a natural step in varia-

tional inference is to maximize the ELBO in (1), which can also be

expressed as,

L(𝜃, 𝜙) = E𝒙𝑢∼𝑝D (𝒙𝑢 )
[
E𝒛𝑢∼𝑞𝜙 (𝒛𝑢 |𝒙𝑢 )

[
log𝑝𝜃 (𝒙𝑢 |𝒛𝑢 )

]
− KL

(
𝑞𝜙 (𝒛𝑢 |𝒙𝑢 ) | |𝑝 (𝒛𝑢 )

) ]
, (4)

where KL is the Kullback-Leibler divergence.

Optimizing ELBO for collaborative filtering, however, can prove

inefficient in practice as the KL term in (4) can be minimized by

simply letting variational posteriors and priors on latent represen-

tations be equal, and thus preventing the VAE from learning useful

data-dependent latent variables [2]. To overcome this issue, similar

to 𝛽-VAE [? ], [34] consider an alternative objective function to

ELBO with weighted KL term,

L𝛽 (𝜃, 𝜙) = E𝒙𝑢∼𝑝D (𝒙𝑢 )
[
E𝒛𝑢∼𝑞𝜙 (𝒛𝑢 |𝒙𝑢 )

[
log𝑝𝜃 (𝒙𝑢 |𝒛𝑢 )

]
− 𝛽 · KL

(
𝑞𝜙 (𝒛𝑢 |𝒙𝑢 ) | |𝑝 (𝒛𝑢 )

) ]
, (5)

with 𝛽 < 1. In fact, it can be shown that using weights 𝛽 < 1 leads

to maximization of the mutual information between latent and

observed variables [58]. To find the best value for 𝛽 in the context

of collaborative filtering, [34] perform a heuristic search, where

they start training with 𝛽 = 0 and gradually increase 𝛽 to 1. They

record the best 𝛽 when the performance of Mult-VAE in terms of a

ranking metric such as NDCG on a validation dataset reaches the

peak.

3.3 Binary Collaborative Filtering
Despite using multinomial likelihood in the generative model (2),

Mult-VAE has been primarily applied to binary observed vari-

ables, obtaining state-of-the-art performance results for large scale

datasets [34]. In this section, we provide a theoretical analysis on

why using a multinomial objective function for binary collaborative

filtering leads to optimization of monotonic ranking gains such as

NDCG [25] which is the standard measure in learning to rank for

search engines [33]. We further show similar theoretical properties

for Bernoulli likelihoods.

We start by expanding the first term in (5), which can be viewed

as the negative reconstruction error or negative distortion [2]. In the

rest discussions, the index for user 𝑢 is dropped for simplicity. For a
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single data sample 𝒙 , the reconstruction term can be expressed as,

E𝒛∼𝑞𝜙 (𝒛 |𝒙)
[
log 𝑝𝜃 (𝒙 |𝒛)

]
∝ E𝒛∼𝑞𝜙 (𝒛 |𝒙)

[ 𝐼∑
𝑖=1

𝑥𝑖 log𝜋𝑖 (𝒛)
]

=

𝐼∑
𝑖=1

E𝒛∼𝑞𝜙 (𝒛 |𝒙)
[
𝑥𝑖

(
𝑓𝜃,𝑖 (𝒛) − log

(∑
𝑖′

exp{𝑓𝜃,𝑖′ (𝒛)}
) )]
, (6)

where 𝑓𝜃,𝑖 is the output of the decoder MLP, corresponding to

item 𝑖 . The expectations in (6) are intractable. Hence, to calculate

the gradient of the negative reconstruction term in (6), reparame-
terization trick for gradient estimation is employed [29, 39]. More

precisely, the variational posterior (3) can be equivalently expressed

as 𝒛𝜙 = 𝜇𝜙 (𝒙) + 𝜎𝜙 (𝒙)𝝐 , where the random variable 𝝐 ∼ N(0, 𝑰𝐾 )
does not depend on encoder parameters 𝜙 . Thus the expectations

in (6) can be re-written as expectations with respect to 𝝐

E𝒛∼𝑞𝜙 (𝒛 |𝒙)
[
𝑥𝑖

(
𝑓𝜃,𝑖 (𝒛) − log

( ∑
𝑖′ exp{𝑓𝜃,𝑖′ (𝒛)}

) )]
= E𝝐∼N(0,𝑰𝐾 )

[
𝑥𝑖

(
𝑓𝜃,𝑖 (𝒛𝜙 ) − log

( ∑
𝑖′ exp{𝑓𝜃,𝑖′ (𝒛𝜙 )}

) )]
. (7)

Using a single Monte Carlo sampling can yield low variance ap-

proximation to the expectation in (7) [5], thereby the final form of

negative distortion term used in Mult-VAE can be expressed as,

𝐼∑
𝑖=1

{
𝑥𝑖

(
𝜂𝑖 − log

(∑
𝑖′

exp{𝜂𝑖′}
) )}

, (8)

where we have introduced 𝜂𝑖 := 𝑓𝜃,𝑖 (𝒛𝝓 ) with implicit dependency

on 𝜃 and 𝜙 .

3.4 Connection to Binary 𝑛-Choose-𝑘 Model
We now establish a connection between the form of the reconstruc-

tion term in (8) and the objective function of the Binary 𝑛-Choose-𝑘

model of [46].

Assuming model inputs 𝜼 = (𝜂1, ..., 𝜂𝐼 ) and binary outputs 𝒙 =

(𝑥1, ..., 𝑥𝐼 ) with 𝑁𝑢 elements equal to 1, the generative process of

the Binary 𝑛-Choose-𝑘 model is as follows:

• Draw 𝑁𝑢 from a prior distribution over counts.

• Draw a subset 𝒄 ⊂ {1, ..., 𝐼 } with cardinality 𝑁𝑢 to have

values 1, according to the following probability:

𝑝 (𝒙𝒄 = 1, 𝒙𝒄 = 0) = exp{∑𝑖∈𝒄 𝜂𝑖 }∑
𝒙 |∑𝑖 𝑥𝑖=𝑁𝑢 exp{∑𝑖 𝑥𝑖𝜂𝑖 } .

Swersky et al. [46] show that the maximization of the likelihood

in probabilistic 𝑛-Choose-𝑘 model leads to the optimal decision-

theoretic prediction for monotonic ranking gain functions such as

NDCG. We provide the main theorem from [46] for completeness

of presentation.

Theorem 1. Under an ordinal 𝑛-Choose-𝑘 model, the optimal
decision theoretic predictions for a monotonic ranking gain are made
by sorting 𝜼 values.

Given 𝑁𝑢 , to learn the model parameters using maximum likeli-

hood, one should optimize

log 𝑝 (𝒙 ;𝜼) =
𝐼∑
𝑖=1

𝑥𝑖𝜂𝑖 − log

( ∑
𝒙 |∑𝑖 𝑥𝑖=𝑁𝑢 exp{

∑
𝑖

𝑥𝑖𝜂𝑖 }
)
. (9)

The similar forms of (8) and (9) suggest a connection between

the reconstruction error of VAE with multinomial likelihood and

the binary 𝑛-Choose-𝑘 model. The following theorem shows that

in fact the negative reconstruction term in (8) is a lower bound of (9).

Theorem 2. Given 𝑁𝑢 ≥ 1 and model inputs 𝜼, the negative
reconstruction term in (8) is a lower bound to the log-likelihood of
binary 𝑛-Choose-𝑘 model.

Proof. The second term of the negative reconstruction term

can be written as

𝑁𝑢 log
(∑
𝑖′

exp{𝜂𝑖′}
) )

= log

(∑
𝑖′

exp{𝜂𝑖′}
) )𝑁𝑢

.

We then expand the argument of logarithm using multinomial

expansion: (∑
𝑖′

exp{𝜂𝑖′}
) )𝑁𝑢

=
∑

𝑛1+...+𝑛𝐼=𝑁𝑢

(
𝑁𝑢

𝑛1, ..., 𝑛𝐼

)
exp

{∑
𝑖′
𝑛𝑖′𝜂𝑖′

}
≥

∑
𝑛1+...+𝑛𝐼=𝑁𝑢

exp

{∑
𝑖′
𝑛𝑖′𝜂𝑖′

}
≥

∑
𝑥1+...+𝑥𝐼=𝑁𝑢

exp{
∑
𝑖′
𝑥𝑖′𝜂𝑖′},

where we use the facts that for 𝑁𝑢 ≥ 1,

( 𝑁𝑢
𝑛1,...,𝑛𝐼

)
≥ 1 and {𝒙 |𝑥1 +

... + 𝑥𝐼 = 𝑁𝑢 } for binary 𝑥𝑖 is a subset of {𝒏|𝑛1 + ... + 𝑛𝐼 = 𝑁𝑢 } for
integer 𝑛𝑖 . □

Theorem 2 sheds new light on the reason that using a VAE with

multinomial likelihood, as in Mult-VAE [34], can be beneficial for

binary collaborative filtering. Although reconstruction term is only

a part of the objective function of Mult-VAE in (5), we observe

that in practice values of 𝛽 << 1 lead to peak performance in

terms of ranking accuracy, and thereby the negative reconstruction

term dominates the objective function. In fact, our experimental

results in the following section show that dropping the KL term in

(5) completely, and thus optimizing only the reconstruction term,

results in minimal performance deterioration, consistently across

different datasets.

In addition to a VAE with multinomial likelihood, we demon-

strate that a similar lower bound to the log-likelihood of binary 𝑛-

Choose-𝑘 model can be obtained by employing a Bernoulli-logistic

combination instead of multinomial-softmax of Mult-VAE. Specifi-

cally, the negative reconstruction term under this framework after

applying re-parameterization trick and monte carlo approximation

can be expressed as

𝐼∑
𝑖=1

{
𝑥𝑖𝜂𝑖 − log

(
1 + exp{𝜂𝑖 }

)}
. (10)

The following theorem shows that the negative reconstruction

term of VAE with Bernoulli-logistic likelihood is a lower-bound to

the log-likelihood of the binary 𝑛-Choose-𝑘 model.
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Theorem 3. Given 𝑁𝑢 ≥ 1 and model inputs 𝜼, the negative
reconstruction term in (10) is a lower bound to the log-likelihood of
binary 𝑛-Choose-𝑘 model.

Proof. Similar to the proof of theorem 2, we show that the

second term in (10) is a lower-bound of the second term of (9). We

have,

exp

{∑
𝑖

log

(
1 + exp{𝜂𝑖 }

)}
=
∏
𝑖

(
1 + exp{𝜂𝑖 }

)
=

∑
𝑥1+...+𝑥𝐼 ≤𝐼

exp{
∑
𝑖′
𝑥𝑖′𝜂𝑖′}

≥
∑

𝑥1+...+𝑥𝐼=𝑁𝑢
exp{

∑
𝑖′
𝑥𝑖′𝜂𝑖′},

where 𝑥𝑖 is binary. Taking logarithms of the both sides of the above

inequality we reach the desired result. □

In addition to multinomial and Bernoulli distributions, we can

consider the more general exponential family of distributions as

the likelihood of the decoder network. For any distribution in this

family, we have

𝑝𝜃 (𝒙 |𝒛) = 𝜈 (𝒙) exp
{
𝜼𝑇 𝒙 −𝐴(𝜼)

}
,

where 𝜼 is the natural parameter and 𝐴(·) is the log-normalizer of

the family. Hence, the negative distortion function correspond-

ing to a likelihood from exponential family can be written as∑𝐼
𝑖=1

{
𝑥𝑖𝜂𝑖 − 𝐴(𝜂𝑖 )

}
. Therefore, if

∑
𝑖 𝐴(𝜂𝑖 ) is an upper-bound of∑

𝑥1+...+𝑥𝐼=𝑁𝑢 exp{
∑
𝑖 𝑥𝑖𝜂𝑖 }, then the corresponding negative re-

construction term can serve as a proxy of the log-likelihood of

𝑛-Choose-𝑘 model.

3.5 KL Annealing
From an information-theoretic perspective, maximizing the mod-

ified lower-bound in (5) with 𝛽 < 1 amounts to maximizing the

mutual information between latent and observed variables. More

precisely, we can rewrite (5) as [58]:

−L𝛽 (𝜃, 𝜙) = (𝛽 − 1)𝐼𝑞𝜙 (𝒙 ; 𝒛) + 𝛽KL(𝑞𝜙 (𝒛) | |𝑝 (𝒛))
+ E𝑞𝜙 (𝒛)

[
KL(𝑞𝜙 (𝒙 |𝒛) | |𝑝𝜃 (𝒙 |𝒛))

]
(11)

where 𝐼𝑞𝜙 (𝒙; 𝒛) = E𝑞𝜙 (𝒛 |𝒙)𝑝D (𝒙)
[
log

𝑞𝜙 (𝒛 |𝒙)
𝑞𝜙 (𝒛)

]
is the mutual

information between 𝒙 and 𝒛 under the variational distribution,

and 𝑞𝜙 (𝒛) =
∫
𝑞𝜙 (𝒛 |𝒙)𝑝D (𝒙)𝑑𝒙 is the aggregate posterior. Hence,

optimizing L𝛽 (𝜃, 𝜙) with values of 𝛽 smaller than one lead to in-

crements in the mutual information between observed and latent

variables as a side product.

Another relationship between reconstruction term, KL term and

the mutual information between 𝒙 and 𝒛 is presented in [2] as

𝐻 − 𝐷 ≤ 𝐼𝑞𝜙 (𝒙; 𝒛) ≤ 𝑅, where 𝐻 = E𝒙∼𝑝D (𝒙)
[
− log𝑝D (𝒙)

]
cor-

responds to the entropy of the underlying data source, 𝐷 is the

reconstruction error, and 𝑅 = E𝒙∼𝑝D (𝒙)
[
KL

(
𝑞𝜙 (𝒛 |𝒙) | |𝑝 (𝒛)

) ]
is the

rate function. Thus, minimizing the distortion function (reconstruc-

tion term) can be interpreted as maximizing the lower bound of the

mutual information without setting any explicit constraints on the

rate function.

The bounds in this section and the previous one suggest that

to achieve good performance in collaborative filtering, we need

to optimize the mutual information or maximize the lower bound

for 𝑛-Choose-𝑘 model. Indeed, our empirical studies show that

modifying the objective function without taking these relationships

into account, such as adding weight decaying terms can worsen

the performance of Mult-VAE as they violate the aforementioned

lower bound properties.

3.6 Semi-Implicit VAE for Collaborative
Filtering

Equipped with insights from previous sections, we understand why

Mult-VAE cannot perform better nomatter howwe tune parameters

in experiments. Nonetheless, Equation (11) sheds light on how to

further improve the performance of collaborative filtering under

the VAE framework. Namely, if a variant of VAE can optimize the

mutual information, the lower bound of the n-Choose-K-model

can be further maximized to approach the ELBO. It is found that

semi-implicit Variational inference (SIVI) [53] has the desirable

properties to meet this goal, as illustrated below. Therefore, we

now propose to use SIVI to enhance the performance of VAE for

collaborative filtering.

In its general form, SIVI defines the approximate posterior in a

hierarchical manner as:

𝒛 ∼ 𝑞(𝒛 |𝝍), 𝝍 ∼ 𝑞𝜙 (𝝍),

where 𝝍 is the mixing distribution. Its marginalization leads to the

Variational familyH = {ℎ𝜙 (𝒛) : ℎ𝜙 (𝒛) =
∫
𝝍 𝑞(𝒛 |𝝍)𝑞𝜙 (𝝍)𝑑𝝍}.

To obtain expressive Variational posterior distributions, the mix-

ing distribution 𝑞𝜙 (𝝍) is allowed to be implicit (e.g. transformation

of noise through an MLP), thus the marginal ℎ𝜙 (𝒛) is intractable
and for estimating model parameters the following lower bound to

ELBO is optimized [53]:

L𝐾 (𝜙, 𝜃 ) = E𝝍∼𝑞𝜙 (𝝍)E𝒛∼𝑞 (𝒛 |𝝍)E𝝍 (1) ,...,𝝍 (𝐾 )∼𝑞𝜙 (𝝍)
[

log

𝑝𝜃 (𝒙, 𝒛)
1

𝐾+1
[
𝑞(𝒛 |𝝍) +∑𝐾

𝑘=1
𝑞(𝒛 |𝝍 (𝑘) )

] ],
where as the number of samples𝐾 increases, the above lower bound

approaches ELBO.

In an amortized setting, rather than using a single-stochastic-

layer encoder as in VAE, semi-implicit VAE (SIVAE) can add as

many stochastic layers as needed, as long as the first stochastic

layer is reparameterizable and has an analytic PDF, and the layers

added after are reparameterizable and simple to sample from. More

specifically, we use the following hierarchical construction with

random noise injection at𝑀 layers:

𝑞𝜙 (𝒛 |𝒙, 𝝁, 𝚺) = N(𝝁𝜙 (𝒙), 𝚺𝜙 (𝒙)),
𝝁𝜙 (𝒙) = 𝑓𝜙 (ℓ𝑀 , 𝒙), 𝚺𝜙 (𝒙) = 𝑔𝜙 (ℓ𝑀 , 𝒙),

ℓ𝑡 = 𝑇𝑡 (ℓ𝑡−1, 𝝐𝑡 , 𝒙 ;𝜙), 𝝐𝑡 ∼ 𝑝 (𝝐𝑡 ) for 𝑡 = 1, ..., 𝑀 (12)

where ℓ0 = ∅ and 𝑓 , 𝑔 and 𝑇𝑡 are all deterministic neural networks.

Note that in each layer of the encoder, in addition to the output

of previous layer and the random noise, the observed inputs are

also injected. This construction is closely related to skip connec-

tions, which are shown to increase the mutual information between
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observed and latent random variables [7]. To learn the model pa-

rameters, we leverage stochastic gradient descent as outlined in

Algorithm 1.

Algorithm 1: Semi-Implicit VAE for collaborative filtering.

Input: Data {𝒙𝑢 }, neural networks 𝑇𝑡 , 𝑓𝜙 and 𝑔𝜙 , source of

randomness 𝝐𝑡 ∼ 𝑝 (𝝐𝑡 ), step sizes 𝜌 and 𝛿

Output:Model parameters 𝜙 and 𝜃

Initialize 𝜙 and 𝜃 randomly

𝝍 = (𝝁𝜙 , 𝝁Σ)
while not converged do

Set L𝐾 = 0

Sample 𝝍 (𝑘)
for 𝑘 = 1, ..., 𝐾 as in (12)

Take sub-sample {𝒙𝑢 }𝑢1:𝑢𝑀
for 𝑗 = 1 : 𝐽 do

Sample 𝝍 𝑗 and 𝒛 𝑗 according to (12)

L𝐾 = L𝐾 + 1

𝐽

[
− log

1

𝐾+1
[ ∑𝐾

𝑘=1
𝑞(𝒛 𝑗 |𝝍 (𝑘) ) +

𝑞(𝒛 𝑗 |𝝍 𝑗 )
]
+ 𝑁
𝑀

log𝑝𝜃 (𝒙 |𝒛 𝑗 ) + log𝑝 (𝒛 𝑗 )
]

end
𝜙 = 𝜙 + 𝜌∇𝜙L𝐾
𝜃 = 𝜃 + 𝛿∇𝜃L𝐾

end

4 EXPERIMENTS
We first study the impact of discarding the KL regularization term

in the VAE framework, i.e. training the models only using the

distortion function term. We consider collaborative filtering using

both multinomial (8) and Bernoulli (10) likelihoods. We then study

how common techniques for improvement of VAEs may affect or

not affect the performance in binary collaborative filtering problem.

Throughout the experiments, we follow [34] and split all users

into training, validation and test sets. The model is trained using

the entire interactions in the training set. For validation and testing,

80% of the interactions are randomly chosen to learn the user-level

latent representations, and then the ranking evaluation metrics

are calculated based on the model predictions of the 20% held-out

interactions.

For both encoder and decoder networks we use MLPs with one

hidden layer with width 600. We set the dimension 𝐾 of latent

variable 𝒛 to 200. Our experiments show that using deeper architec-

ture does not enhance the performance. We use 𝑡𝑎𝑛ℎ(·) activation
function for all MLPs. To tune the regularization parameter 𝛽 in (5),

we follow [34] and anneal the KL term linearly for 200,000 gradient

updates. For training, we use Adam optimizer [27] with batch size

of 500.

4.1 Datasets
We use three widely used large-scale user-item interaction datasets

in our empirical studies as below.

MovieLens-20M (ML-20M)1: This is a user-movie ratings dataset

gathered from a movie recommendation service [16]. Users who

1
https://grouplens.org/datasets/movielens/20m/

Table 1: Attributes of datasets used in the experiments. In-
teractions are non-zero entries of the user-item matrix.

ML-20M Netflix MSD

# of users 136,677 463,435 571,355

# of items 20,108 17,769 41,140

# of interactions 10.0M 56.9M 33.6M

# of held-out users 10,000 40,000 50,000

have watched less than five movies are discarded. The user-movie

matrix is binarized by keeping ratings of four or higher.

Netflix Prize (Netflix)2: This movie-user ratings data is from

the Netflix Prize [3]. We perform similar pre-processing steps as

for ML-20M, and only keep users watched at least five movies, and

binarize the data by keeping ratings of four or higher.

Million Song Dataset (MSD)3: This is a user-song play counts

data released as part of the Million Song Dataset [4]. We follow the

same procedure as in [34] to binarize the data: we only keep users

with at least 20 songs in their listening history and songs that are

listened to by at least 200 users.

Following Liang et al. [34], we have the same training/validation/test

set split. Table 1 contains the attributes of the three datasets. % of

interactions means the density of the user-item click matrix. # of

the held-out users refers to the number of validation/test users out

of the total number of users in the first row.

4.2 Metrics
We use two popular learning-to-rank scoring functions to com-

pare the predicted rank of the held-out items with their true rank:

truncated normalized discounted cumulative gain (NDCG@𝑅) and

Recall@𝑅. Let 𝜔 be a permutation of 𝑅 items, 𝜔 (𝑟 ) be the item at

rank 𝑟 , and 𝐼𝑢 be the set of held-out items that user 𝑢 has interac-

tions with. Then, we have

Recall@𝑅(𝑢,𝜔) :=

∑𝑅
𝑟=1 I[𝜔 (𝑟 ) ∈ 𝐼𝑢 ]
min(𝑅, |𝐼𝑢 |)

,

DCG@𝑅(𝑢,𝜔) :=

𝑅∑
𝑟=1

2
I[𝜔 (𝑟 ) ∈𝐼𝑢 ] − 1

log(𝑟 + 1) .

NDCG@𝑅 is then obtained by dividing DCG@𝑅 by its maximum

possible value, where all the held-out items are ranked at the top.

NDCG@𝑅 uses a monotonically increasing discount coefficient to

emphasize the significance of higher ranks versus lower ones, while

Recall@𝑅 considers all items equally important.

4.3 Baselines
In addition to Mult-VAE [34], we also include the performance re-

sults of the following state-of-the-art collaborative filtering models,

with similar settings as in [34]:

Weighted Matrix Factorization (WMF) [24]: WMF is a linear

low-rank factorization model, which is trained by alternating least

squares. The weights on the 0’s is set to one, and the 1’s are tuned

from the set {2, 5, 10, 30, 50, 100}. The dimension of latent variables

2
https://archive.org/details/nf_prize_dataset.tar

3
http://millionsongdataset.com/

https://grouplens.org/datasets/movielens/20m/
https://archive.org/details/nf_prize_dataset.tar
http://millionsongdataset.com/
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is selected as 𝐾 ∈ {100, 200} based on NDCG@100 on validation

users with a grid search method.

SLIM [37]: This is a sparse linear model which learns an item-

to-item similarity matrix by solving a constrained ℓ1-regularization

optimization. The regularization parameters are found using a grid-

search over {0.1, 0.5, 1, 5}. Due to long run-time, the results of SLIM

on MSD dataset are not reported.

Collaborative Denoising Auto-encoder (CDAE) [50]: This
model augments the standard denoising auto-encoder by adding

per-user latent factors to the input. The dimension of the bottleneck

layer is set to 200, and Adam optimizer [27] with weight decay is

used for training.

aWAE [56]: This model introduced an 𝐿1 regularization term to

Wasserstein autoencoders to learn a sparse low-rank representation

form for the latent variables of VAE.We directly adopt their reported

results on ML-20M and Netflix benchmarks for comparison.

4.4 Removing the KL Term
In the first part of the experiments, we quantitatively assess how

the VAE based collaborative filtering method performs if the KL

regularization term is completely discarded, i.e. in (5) we have 𝛽 = 0.

Table 2 contains the performance results of Mult-VAE [34], and

also the scenarios where only the reconstruction term based on

multinomial likelihood (8), and the reconstruction term based on

Bernoulli likelihood (10) are used for training the encoder and

decoder networks. These results support the implications of Theo-

rems 2 and 3, which present the particular form of reconstruction

terms obtained by multinomial-softmax and Bernoulli-logistic com-

binations as lower bound approximates of the 𝑛-Choose-𝑘 model,

justifying the good performance of these variants in terms of mono-

tonic ranking metrics. This observation de-emphasizes the role of

KL annealing for achieving state-of-the-art performance in the col-

laborative filtering, as advocated for in [34]. We further notice that

using the Bernoulli-logistic combination in the decoder network

can lead to slightly better performances, when the KL annealing

is not employed. This observation underscores the importance of

the sub-optimality connections established in Theorems 2 and 3,

and refute the claim of superiority of multinomial over Bernoulli

outlined in [34].

4.5 Impacts of VAE variants
In this section of experiments, we study the impacts of adopting

some of the commonly used approaches for the improvement of

VAE on the performance of VAE based collaborative filtering. We

divide these approaches into two groups, according to whether

they alter the form of the reconstruction function or not. In the first

category, we have the methods that are used to improve the perfor-

mance of VAEs by employing more sophisticated distributions.

Variational Mixture of Posteriors (VampPrior) [48]. This
framework extends VAE with variational mixture of posteriors prior,
which consists of mixture distributions with components given

by variational posteriors conditioned on learnable pseudo-inputs.

Table 2: Comparison between Mult-VAE and the methods
without KL regularization term, which are solely based on
the distortion function. “Multinomial" and “Logistic", re-
spectively, denote the distortion functions based on multi-
nomial and Bernoulli likelihoods.

(a) ML-20M

Recall@20 Recall@50 NDCG@100

Mult-VAE 0.395 0.537 0.426

Multinomial 0.386 0.530 0.418

Logistic 0.390 0.526 0.423

(b) Netflix

Recall@20 Recall@50 NDCG@100

Mult-VAE 0.351 0.444 0.386

Multinomial 0.344 0.438 0.380

Logistic 0.352 0.438 0.386

(c) MSD

Recall@20 Recall@50 NDCG@100

Mult-VAE 0.266 0.364 0.316

Multinomial 0.254 0.349 0.300

Logistic 0.266 0.353 0.315

Specifically, VampPrior can be expressed as

𝑝𝜆 (𝒛) =
1

𝑀

𝑀∑
𝑚=1

𝑞𝜙 (𝒛 |𝒖𝑚),

where 𝒖𝑚 is a𝐾-dimensional vector referred to as pseudo-inputs,𝑀

is the number of pseudo-inputs, and 𝜆 = {𝜙, 𝒖1, ..., 𝒖𝑀 } is the set of
parameters for this prior. Note that the encoder network parameters

𝜙 are shared between the prior and variational posterior, under this

framework. In our experiments we use𝑀 = 5.

InverseAutoregressive Flow (IAF) [28]. This framework, which

consists of a chain of invertible transformations, aims to build flexi-

ble variational posterior distributions. Each transformation is based

on an autoregressive neural network such as MADE [14]. Briefly,

the 𝑡th transformation with input 𝒛 (𝑡−1) and output 𝒛 (𝑡 ) is con-
structed as

𝝈 (𝑡 ) = sigmoid(𝒔 (𝑡 ) ),
𝒛 (𝑡 ) = 𝝈 (𝑡 ) ⊙ 𝒛 (𝑡−1) + (1 − 𝝈 (𝑡 ) ) ⊙ 𝒎 (𝑡 ) ,

where [𝒎 (𝑡 ) , 𝒔 (𝑡 ) ] is the output of the autoregressive network with
input 𝒛 (𝑡 ) . In our experiments, we use𝑇 = 1 layer of transformation,

hence 𝒛 (0) corresponds to the original latent variable with diagonal

covariance matrix in (3), and 𝒛 (1) is a latent variable with full

covariance matrix.

Regularization of NN weights. Finally, we consider regulariz-
ing the weights of neural networks in both encoder and decoder.

Specifically, the objective function with regularization can be ex-

pressed as

L𝛽 (𝜃, 𝜙) + 𝜆R(𝒘),
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Table 3: Comparisons of various baselines and differ-
ent configurations of VAE with multinomial likelihood.
VAE+Vamp: VampPrior is used as the prior on latent vari-
ables 𝒛, VAE+IAF: inverse autoregressive flow is used in the
encoder network, and VAE+Reg: a regularization term on
weights of neural networks is added to the objective func-
tion. Best results are in bold.

(a) ML-20M

Recall@20 Recall@50 NDCG@100

WMF 0.360 0.498 0.386

SLIM 0.370 0.495 0.401

CDAE 0.391 0.523 0.418

aWAE 0.400 0.530 0.429

Mult-VAE 0.395 0.537 0.426

VAE+Vamp 0.395 0.538 0.426

VAE+IAF 0.387 0.525 0.416

VAE+Reg 0.328 0.458 0.360

SIVAE 0.400 0.539 0.430

(b) Netflix

Recall@20 Recall@50 NDCG@100

WMF 0.316 0.404 0.351

SLIM 0.347 0.428 0.379

CDAE 0.343 0.428 0.376

aWAE 0.352 0.438 0.386

Mult-VAE 0.351 0.444 0.386

VAE+Vamp 0.352 0.443 0.386

VAE+IAF 0.340 0.430 0.375

VAE+Reg 0.275 0.359 0.311

SIVAE 0.358 0.448 0.391

(c) MSD

Recall@20 Recall@50 NDCG@100

WMF 0.211 0.312 0.257

SLIM - - -

CDAE 0.188 0.283 0.237

aWAE - - -

Mult-VAE 0.266 0.364 0.316

VAE+Vamp 0260 0.357 0.310

VAE+IAF 0.247 0.343 0.298

VAE+Reg 0.090 0.140 0.120

SIVAE 0.272 0.373 0.323

where R(·) is the regularizer and 𝒘 is the set of weights. In our

experiments, we use 𝜆 = 0.01 and a ℓ2 regularization function.

Table 3 compares the performance results of SIVAE and different

configurations of VAE with baseline methods in terms of ranking

evaluation metrics. By constructing more flexible approximate pos-

terior distributions, and also increasing the mutual information

between observed and latent variables, SIVAE is able to improve

the performance of Mult-VAE across all benchmark datasets.

More carefully examining Table 3, two major observations can

be noted. First, both VampPrior and IAF variants fail to improve the

performance of Mult-VAE for ranking the held-out items. In fact,

employing IAF slightly decreases the performance. This observation

can be justified based on the experiments in section 4.4, and also the

connections established between the distortion function of Mult-

VAE and the objective function of probabilistic 𝑛-Choose-𝑘 model.

More precisely, the distortion function dominates the objective

function when the goal is to maximize the ranking metrics, and as

indicated by Theorems 1 and 2, by optimizing this reconstruction

function one can approximately optimize the monotonic ranking

functions such as NDCG. Employing VampPrior and IAF, however,

does not change the general form of the distortion function in (8),

as they only modify the way 𝜼 depends on the inputs 𝒙 .
On the other hand, Table 3 shows that incorporating a regular-

ization term for the weights of the neural networks severely deteri-

orates the performance of Mult-VAE for collaborative filtering. This

may be justified by noting that introducing the regularization term

breaks the lower-bound relationship of the distortion function of

Mult-VAE to the objective of 𝑛-Choose-𝑘 model. Thus, increments

in the objective of Mult-VAE with regularization do not necessarily

translate into increments in (9).

These observations illustrate the limitations of general tech-

niques for improvement of VAEs in achieving better ranking pre-

dictions.

4.6 Discussion
Given the importance of the reconstruction term for the perfor-

mance of VAE in collaborative filtering, a natural question arising

is how to exploit this vision to improve the performance in ranking

predictions. In our work, we have exploited one solution, semi-

implicit variational inference (SIVI) [53], to expand the commonly

used analytic variational distribution family by mixing the varia-

tional parameter with a flexible distribution. In particular, semi-

implicit VAE employs a hierarchical encoder that injects random

noise at different stochastic layers. This noise injection is closely

related to the dropout step, utilized in the input layer of Mult-VAE.

In fact, our experimental observations in Table 3 confirm the utility

of semi-implicit VAE, which is a type of inherent regularization on

the reconstruction term, to gain state-of-the-art ranking prediction

performance. Thereby, improving the dropout step, by introducing

learnable parameters can be another potential direction to improve

the optimization of the reconstruction term [12].

Witnessing the success of transformers [6, 26, 32, 49], it is natural

to introduce a transformer-based VAE [10, 38] to overcome the

limitations of VAE for collabrative filtering. As we know, a main

reason for using VAE is to remedy the no-set-meaning issue of

latent codes in a general auto-encoder. The regularising loss in

VAE encourages a smooth distribution of latent codes. However,

VAE for collabrative filtering, in practice, is extremely prone to

overfitting as the network learns to place all the probability mass

to the non-zero entries. It has been proved that the maximization

of the likelihood in probabilistic 𝑛-Choose-𝑘 model leads to the

optimal decision-theoretic prediction for monotonic ranking gain

functions such as NDCG [46]. Therefore, how to maximize the

likelihood becomes a key in this regard. Integration of transformer

into VAE may create a program to meet the need since multi-head

attentions will help the scoring or ranking of user-item relations
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follow the semantic relevance to a much larger degree. Namely,

the representations of latent codes with transformer-based VAE

will improve the loss against the target output. We can evaluate

the latent code effectiveness and even use Bayesian optimization

to search the space. This exploration is our future work.

5 CONCLUSION
In addition to the role of reweighted KL term in increasing the

mutual information between learned representations and observed

data, in this paper we established a theoretical connection between

the distortion (reconstruction error) term of the evidence lower

bound of Mult-VAE, which offers an explanation for usage of multi-

nomial likelihood for binary collaborative filtering. We also derived

a similar connection for VAE with Bernoulli likelihood. These con-

nections suggest VAE as an amortized variational approximation of

the probabilistic 𝑛-Choose-𝑘 model, which has theoretical guaran-

tees for optimization of monotonic ranking metrics such as NDCG.

Our empirical experiments show the major role of the distortion

term in the good performance of Mult-VAE for ranking predic-

tion task, thus reducing the importance of the KL annealing step.

Based on our theoretical analysis, we also justify why employing

techniques such as mixture priors or more sophisticated encoder

networks may fail to result in better ranking predictions. This sheds

more light on the limitations of VAE for collaborative filtering. We

also proposed a framework based on semi-implicit variational infer-

ence to improve the performance of VAE in collaborative filtering.

Evaluation on multiple real-world benchmarks demonstrates the

utility of SIVAE in boosting the performance of VAE based col-

laborative filtering methods. Finally, we had a detailed and deep

discussions on the implications of the findings and proposed future

approaches to further improve the performances of current AVEs.
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