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ABSTRACT
Pairwise re-rankingmodels predict which of two documents is more
relevant to a query and then aggregate a final ranking from such
preferences. This is often more effective than pointwise re-ranking
models that directly predict a relevance value for each document.
However, the high inference overhead of pairwise models limits
their practical application: usually, for a set of 𝑘 to-be-re-ranked
documents, preferences for all 𝑘2 − 𝑘 reasonable comparison pairs
(back and forth) are aggregated. We investigate whether the ef-
ficiency of pairwise re-ranking can be improved by subsampling
from all pairs. In an exploratory study, we evaluate three sampling
methods and five preference aggregation methods. The best combi-
nation allows for an order of magnitude fewer comparisons at an
acceptable loss of effectiveness, while competitive effectiveness is
already achieved with about one third of the comparisons.
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1 INTRODUCTION
Pre-trained transformers have led to a new era in information
retrieval: with a sufficient amount of training data, transformer-
based re-rankers are significantly more effective than traditional
retrieval models [23]. Two classes of re-rankers are implemented
using pre-trained transformers [24]: (1) pointwise re-rankers that
predict the relevance of a document 𝑑 to a query 𝑞, and (2) pairwise
re-rankers that predict which of two documents 𝑑𝑖 , 𝑑 𝑗 is more rel-
evant to 𝑞. To further maximize the effectiveness, the mono-duo
design pattern [33] shown in Figure 1 applies both sequentially.
Given a query 𝑞, a document collection 𝐷 , and a ranking of 𝐷
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Figure 1: The mono-duo design pattern for re-ranking. Parts
investigated in this paper are highlighted in orange.

produced by a traditional retrieval model like BM25, the top-𝑘 ′
documents 𝑑1, . . . , 𝑑𝑘′ are re-ranked according to their pointwise
relevance to 𝑞. Then, the top 𝑘 documents, 𝑘 ≪ 𝑘 ′, are pairwise re-
ranked in three steps. First, pairs of documents (𝑑𝑖 , 𝑑 𝑗 ) are sampled;
0 < 𝑖, 𝑗 < 𝑘 and 𝑖 ≠ 𝑗 . Second, each pair (𝑑𝑖 , 𝑑 𝑗 ) is passed to a trans-
former model to predict a probability 𝑝𝑖 𝑗 = 𝑃 (𝑑𝑖 > 𝑑 𝑗 | 𝑑𝑖 , 𝑑 𝑗 , 𝑞) in-
dicating whether the document 𝑑𝑖 is more (𝑝𝑖 𝑗 > 0.5) or less (𝑝𝑖 𝑗 ≤
0.5) relevant to 𝑞 compared to 𝑑 𝑗 . Third, for each document 𝑑𝑖 , a
score 𝑠𝑖 is aggregated from all the comparison probabilities derived
for 𝑑𝑖 and these scores are then used to derive the final re-ranking.

Empirical evidence suggests that pairwise re-rankers are more
effective than pointwise re-rankers since their relevance scores take
the relative relevance differences between documents into account,
rather than making independent relevance predictions [33]. To
maximize the potential effectiveness gains, previous work has relied
on exhaustive comparisons of all 𝑘2 − 𝑘 pairs of the top 𝑘 to-be-re-
ranked documents. Given the high run time overhead of transformer
inferences, this quadratic step led to the recommendation that in
practice the re-ranking depth should be limited to 𝑘 ≤ 50.

However, many of the estimated comparison probabilities might
be redundant in the sense that the same preferences could be pre-
dicted from already estimated other comparisons. In principle, a
lower bound on the run time complexity of 𝑂 (𝑘 log𝑘) would be
achievable with suitable sorting algorithms if the estimated compar-
ison probabilities were “consistent” (i.e., 𝑝𝑖 𝑗 = 1−𝑝 𝑗𝑖 ) and transitive.
We investigate for the first time whether the efficiency of pairwise
re-rankers can be increased without significant loss of effectiveness
by subsampling and thus sparsifying the comparison set.
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The two components of the mono-duo re-ranking pipeline that
we study in this paper are highlighted in Figure 1: We introduce
a sampling step before the pairwise inference to draw a subset of
the 𝑘2 − 𝑘 possible comparisons, and we revisit the aggregation
step since its effectiveness directly depends on the sample it re-
ceives (Section 3). To investigate the effect of sparsification on the
retrieval effectiveness, we study three sampling methods (global
random, exhaustive window, skip window) and five aggregation
methods (sorting, summation, regression, greedy, and graph-based)
on three datasets (ClueWeb09, ClueWeb12, MS MARCO) using the
monoT5 (pointwise) and duoT5 (pairwise) models [33] (Sections 4).
Our results suggest that random sampling allows for an order of
magnitude fewer comparisons at an acceptable loss of effectiveness,
while competitive effectiveness to the all-pairs approach can already
be achieved with about one third of the comparisons. (Section 5).

2 RELATEDWORK
We briefly give some background on the history of learning to rank
retrieval models before detailing the nature of pairwise learning
to rank models. Then rank aggregation approaches are reviewed
which we employ to aggregate inferred pairwise relevance prefer-
ences into a final relevance score. Last, related efforts at making
transformer-based learning to rank more efficient are reviewed.

Learning to Rank. Machine learning has meanwhile for decades
been successfully applied to improve retrieval effectiveness [16, 24].
Traditionally, feature-based learning to rank models evolved from
pointwise to pairwise to listwise approaches [25]. While still suc-
cessfully applied to this day [34], the recent paradigm shift intro-
duced by pre-trained transformer models shifted the community’s
focus away from feature-based learning to rank, promising signifi-
cantly more retrieval effectiveness [24]. History appears to repeat
itself as the aforementioned evolution from pointwise approaches
like monoBERT [31] and monoT5 [30] to pairwise approaches [24]
has been observed as well.

Pairwise Learning to Rank. Pairwise learning to rank approaches
predict which document in a pair is probably more relevant to a
query and should therefore be ranked higher than the other [25].
Pairwise loss functions consider only the relative order of the two
input documents [25]. In feature-based as well as transformer-based
learning to rank, pairwise approaches usually outperform point-
wise ones, which score documents independently of each other [25].
Yet, as they have to compute a prediction for all possible document
pairs, their inference overhead increases quadratically. In an ef-
fort to reduce the comparison count, the theoretical properties of
feature-based pairwise approaches are extensively studied [9, 22],
and some are specifically designed to exhibit desirable characteris-
tics. For example, SortNet [35] uses a learned preference function
that is guaranteed to output symmetric preferences, allowing to
skip the preference computation for those redundant pairs. Yet,
recent pairwise transformer-based models like duoBERT [33] and
the more effective duoT5 [33] yield excellent results, but lack the
theoretical guarantees of models like SortNet. Additionally, their
theoretical analysis is still in its infancy, and previous work found
such models to be difficult to interpret [26, 40]. Hence, they fall back

to computing preferences for all pairs of documents, to the detri-
ment of their overall efficiency [44], which limits their applicability
in user-facing search engines.

Rank Aggregation. Rank aggregation [25] derives from the pair-
wise relevance preferences between any two documents a relevance
score for each individual document that is used to rank them. It
has been proven NP-hard to find the optimal solution [10]. Two
general approaches to the problem exist: static and dynamic rank
aggregation. Static rank aggregation commences after all pairwise
comparisons have been finished; dynamic rank aggregation decides
during aggregation which documents to compare, where the op-
timal next comparison identified based on all predecessors [41].
While dynamic aggregation shows an empirical advantage over
static aggregation, the latter has a better lower bound for least
required comparisons [41]. We focus on static aggregation in this
paper to establish a well-grounded baseline.

We identify five paradigms to emerge from common static rank
aggregation approaches: (1) Sorting, where comparisons are as-
sumed to be consistent and form a total order, and thus can be
ranked by pairwise sorting algorithms such as Kwiksort [2]. (2) Ad-
ditive aggregation [33], where the rank of a document is indi-
cated by the sum of it’s comparison probabilities. Prior to sum-
mation, transformations may be applied to the probability scores.
(3) Regression-based aggregation [4, 37, 39, 45], where latent scores
for documents are learned such that they optimally correspond to
a given set of pairwise comparisons. (4) Greedy aggregation [3, 10],
where the current best-ranked document is determined iteratively
by a heuristic and appended to the final ranking. The next itera-
tion then operates on a reduced document set with the previously
chosen one removed. (5) Graph-based aggregation [32, 42], where
comparisons are interpreted as directed edges between document
nodes and a measure of graph centrality is used to derive score for
ranking. We choose one representative from each paradigm to test
in this paper. A detailed description of the chosen algorithms is
given in Section 3.2.

Efficiency Improvements for Transformer-based Re-Rankers. The
high computational cost of re-ranking documents with pre-trained
transformers has recently received attention [19]. Even for point-
wise approaches, the inference overhead can be prohibitive for
practical applications [44]. Two approaches to increasing the ef-
ficiency of neural re-rankers can be discerned: (1) increase the
efficiency of the ranking model, or (2) reduce the required amount
of inferences. Approaches to the former include early-exiting from
inference by intermediate between-layer classification in BERT-
like models [43], model distillation [17, 18], and improved dense
representations [38].

For the latter, Zhang et al. [44] propose to introduce filtering
steps in multi-stage re-rank pipelines. They utilize feature-based
learning to rank to compute a set of candidate documents that is
then re-ranked using a BERT-like neural ranking model, increasing
efficiency by a factor of up to 18 times compared to an unfiltered
baseline at the same effectiveness. Yet, while document filtering
techniques have been proposed for pointwise re-ranking, to our
knowledge, filtering approaches for pairwise re-ranking have not
been addressed to date.
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3 METHODOLOGICAL APPROACH
In this section, we detail the steps of our adapted mono-duo re-
ranking pipeline (Figure 1): the sampling methods to obtain a com-
parison set (Section 3.1), the aggregation methods to combine pref-
erences into a relevance score (Section 3.2), and for completeness,
the other steps adopted from the literature: initial retrieval, as well
as pointwise and pairwise re-ranking (Section 3.3).

3.1 Sampling
Given the top-𝑘 results 𝐷𝑘 of the mono-duo paradigm’s pointwise
re-ranking step for query 𝑞, we suggest to sparsify the set of all
𝑘2 −𝑘 possible comparisons1 for the pairwise re-ranking by using a
subsampled comparison set𝐶𝑞 ⊆ 𝐷𝑘 ×𝐷𝑘 . The goal of the sampling
is to select a 𝐶𝑞 as small as possible without compromising the
quality of the final ranking.We distinguish two sampling paradigms:
random sampling and structured sampling. The main difference
between the two is their determinism.With structured sampling, the
same pointwise re-ranking always leads to the same comparison set,
which is not the case for random sampling. We further impose two
requirements for sampling: (1) each document should have the same
number of comparisons, and (2) each comparison can be sampled
at most once. Both requirements ensure compatibility with a wide
range of aggregation approaches and minimize sampling-induced
bias. To illustrate the differences of the three sampling procedures
described below, Figure 2 shows the example comparison matrices
for a document set of size 𝑘 = 20 for two sample rates, one per row.

Global random sampling (G-Random). For a random sample, for
each document 𝑑1, . . . , 𝑑𝑘 , a fraction 𝑟 ∈ (0...1] of the (𝑘 − 1) po-
tential comparisons to the other top 𝑘 documents of the pointwise
re-ranking is randomly selected. The size of the sampled compari-
son set is ⌊𝑟 · (𝑘2 − 𝑘)⌋. The hypothesis underlying this sampling
strategy is to not trust the pointwise ranking at all. This hypothesis
is almost certainly false for most topics, yet, this sampling strategy
still serves as a good baseline for comparison.

Exhaustive window sampling (E-Window). For structured sam-
pling, a sliding window of size𝑚 is moved over the list of documents
𝑑1, . . . , 𝑑𝑘 to be re-ranked, comparing the 𝑖-th document to its𝑚 suc-
cessors with index ( 𝑗 mod 𝑘) + 1, where 𝑗 ∈ {𝑖 + 1, . . . , 𝑖 +𝑚}. The
windowwraps around to the beginning of the ranking, so that docu-
ments at its endwith index 𝑖 > 𝑘−𝑚 are compared to the top-ranked
ones. The size of the sampled comparison set is 𝑘 ·𝑚. The hypothesis
underlying this sampling strategy is that the pointwise ranking is
globally ranked in an approximate order of relevance, but local re-
ranking is still needed. Under this assumption, we initially simply
stopped advancing the window once 𝑖 +𝑚 ≥ 𝑘 , effectively sampling
an exhaustive comparison of the end of the ranking. However, pilot
experiments showed the outlined procedure to outperform our ini-
tial intuition, likely due to a more globally uniform sampling and
less local bias to affect the aggregation method.

Skip window sampling (S-Window). The E-Window approach is
limited to the immediate local neighborhood of a document in the
pointwise re-ranking. To incorporate the global neighborhood into
the comparison process, we introduce a skip size 𝜆 to the window

1Usually, a document is not compared to itself.
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Figure 2: Example comparisonmatrices of different sampling
procedures for 20 documents at different sampling rates. If
comparison (𝑑𝑖 , 𝑑 𝑗 ) is sampled, cell 𝑖, 𝑗 of thematrix is colored
blue. |𝐶𝑞 | = 80 in upper row, |𝐶𝑞 | = 200 in lower row.

of size𝑚, comparing the 𝑖-th document to its𝑚 successors with
index ( 𝑗 mod 𝑘) + 1, where 𝑗 ∈ {𝑖 + 𝜆, 𝑖 + 2𝜆, . . . , 𝑖 +𝑚𝜆}. For ex-
ample, with 𝜆 = 3, each document is compared to every third of
its successors. For 𝜆 = 1, this sampling method is equivalent with
exhaustive window sampling. The hypothesis underlying this sam-
pling method basically corresponds to that of exhaustive window
sampling; the 𝜆-skip merely introduces a deterministic means to
increase the coverage of the windowwithout increasing the number
of comparisons. When 𝜆 is chosen large enough, the whole ranking
is covered, which essentially corresponds to the hypothesis of the
global random sampling. The downside of this sampling method is
its additional hyperparameter.

3.2 Aggregation
Preference scores for all sampled comparisons in 𝐶𝑞 are inferred,
where 𝑝𝑖 𝑗 is the preference probability for a document pair (𝑑𝑖 , 𝑑 𝑗 ) ∈
𝐶𝑞 given by the probability measure 𝑃 (𝑑𝑖 > 𝑑 𝑗 | 𝑑𝑖 , 𝑑 𝑗 , 𝑞) induced by
the pairwise model. These need to be combined into a singular score
values 𝑆𝑖∈1...𝑘 for each document to derive a final output ranking.
We test five different aggregation methods, each stemming from a
different paradigm of aggregation.

Kwiksort Aggregation. As baseline method for the lower bound
of time complexity, and thus the most efficient regarding compar-
ison count (𝑛 log𝑛), we choose the Kwiksort method [2]. It is an
extension of the QuickSort algorithm for pairwise data instead of
item-wise sorting: first, a random document 𝑑𝑖 is chosen to be the
pivot. Then, all documents comparing to be lower-ranked than
𝑑𝑖 and all documents comparing to be higher-ranked than 𝑑𝑖 are
placed in separate subsets. The algorithm is recursively applied to
both sets until a final ranking is obtained. This aggregation methods
differs from the other four in that it does not rely on a preceding
sampling step to achieve efficiency: the reduced comparison count
is a feature of the tournament-like aggregation itself.
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Additive Aggregation. Pradeep et al. [33] propose four different
aggregation techniques based on preference probability summation.
They find the symmetric sum of preference probabilities to be the
best performing:

𝑆𝑖 =
∑︁

𝑗 ∈1...𝑘
(𝑝𝑖 𝑗 + (1 − 𝑝 𝑗𝑖 )) (1)

On sampled comparison data, a shortcoming of this method w.r.t
the original setup of Pradeep et al. [33] is that for any pair (𝑑𝑖 , 𝑑 𝑗 )
in the sampled set, the inverse case (𝑑 𝑗 , 𝑑𝑖 ) is not guaranteed to be
present. Thus, the symmetric sum defined above is not necessarily
complete and zero is added for non-present comparisons.

Bradley-Terry Aggregation. The Bradley-Terry model [4] infers
latent scores 𝑆𝑖 for documents based on the comparison set using
maximum-likelihood estimation. With exponential score functions,
the model is reduced to a logistic regression [1] on pairwise data
and can be expressed as follows:

L(𝑆,𝐶) =
∑︁

(𝑑𝑖 ,𝑑 𝑗 ) ∈𝐶
log 𝑒𝑆𝑖

𝑒𝑆𝑖 + 𝑒𝑆 𝑗
(2)

The unknown latent score set 𝑆 is then solved for using BFGS
optimization to optimally fit the supplied comparisons. The Bradley-
Terry model does not take into account comparison weights. Thus,
the comparisons are modified to directly encode the preference, i.e.
a document pair (𝑑𝑖 , 𝑑 𝑗 ) with score 𝑝𝑖 𝑗 < 0.5 is flipped to (𝑑 𝑗 , 𝑑𝑖 ).

Greedy Aggregation. Cohen et al. [10] propose a greedy ordering
algorithm that is proven to closely approximate the best total order.
It is illustrated in Algorithm 1: it initializes a potential vector 𝜋 ,
where potential of each document is the preference sum of com-
parisons where 𝑑𝑖 occupies the first position in a comparison tuple,
minus the preference sum of comparisons where 𝑑𝑖 occupies the
second position. In each iteration, the document with the highest
potential is removed from the set; the remaining potentials are
updated to reflect the documents’ removal. The score of each docu-
ment is set to the number of remaining documents after removal. In
sampled setups, the preference set is incomplete. Missing document
pairs are assigned a zero score.

Data: Document set 𝐷 , preference set 𝑅
Result: Document scoring 𝑆
foreach 𝑑𝑖 ∈ 𝐷 do 𝜋 (𝑑𝑖 ) ←

∑
𝑑 𝑗 ∈𝐷 𝑝𝑖 𝑗 −

∑
𝑑 𝑗 ∈𝐷 𝑝 𝑗𝑖 ;

while 𝐷 ≠ ∅ do
𝑑𝑖 ← arg max𝑑 𝑗 ∈𝐷 𝜋 (𝑑 𝑗 );
𝑆𝑖 ← #𝐷 ;
𝐷 ← 𝐷 \ {𝑑𝑖 };
foreach 𝑑 𝑗 ∈ 𝐷 do 𝜋 (𝑑 𝑗 ) ← 𝜋 (𝑑 𝑗 ) + 𝑝𝑖 𝑗 − 𝑝 𝑗𝑖 ;

end
Algorithm 1: Greedy Sorting [10]

PageRank Aggregation. The comparison set can be interpreted as
weighted directed graph 𝐺 = (𝑉 = 𝐷, 𝐸 = {(𝑑𝑖 , 𝑑 𝑗 , 𝑝𝑖 𝑗 )∀(𝑑𝑖 , 𝑑 𝑗 ) ∈
𝐶}), where documents are nodes and comparisons form directed
edges establishing a greater than relation, weighted by the predicted
comparison probability. The goal of graph-based methods such

as PageRank [32] is to assign a score to each node indicating its
importance to the network. A ranking is then distilled by sorting
documents descending by their score. The fundamental principle of
PageRank, that nodes with many incoming edges should be ranked
higher, and even more so when the incoming relations stem from
other high-ranking nodes, translates well to the sorting problem at
hand. The score 𝑆𝑖 of a node, i.e. document, 𝑑𝑖 is expressed as

𝑆𝑖 = 𝑐
∑︁
𝑣∈𝐵𝑖

𝑆𝑖

𝑁𝑣
(3)

where 𝐵𝑖 is the set of nodes comparing to be less than 𝑑𝑖 , 𝑁𝑖 is the
number of outgoing edges for a node 𝑑𝑖 , and 𝑐 is a normalization
factor. This definition is recursive and can be extended to weighted
edges [28]. Scores are solved for using the power iteration method.

3.3 Ranking Pipeline
Replicating the experimental setup of Pradeep et al. [33] as closely
as possible, we first obtain an initial ranking for all collections and
topics using BM25 (as implemented in PyTerrier [27]) in its default
configuration. The top 𝑘 ′ = 1000 documents are then re-ranked us-
ing the monoT5 ranking model[30] in the pointwise step. Sampling
is applied to to the top 𝑘 = 50 documents to identify a set of compar-
isons to be inferred. For each comparison, the duoT5 model [33] is
used to infer a pairwise probability score in the pairwise step. Both
transformer models are used in their largest available pretrained
version.2 T5 is chosen over BERT variants, as T5 has been shown to
outperform those [24]. The resulting scores are finally aggregated
into the output ranking. To avoid repeated inference, all 𝑘2 − 𝑘
pairwise comparisons are cached once for each topic.

The maximum input length accepted by the transformer mod-
els is limited, thus a representative passage has to be chosen for
inference. Following the method of Dai and Callan [15], each docu-
ment is divided into 250-word fixed-length passages. Fixed-length
passages have proven more effective than variable-length passages
[21]. Passage division is done using the TREC CAsT4 tool3. We use
the first passage as representative. Pilot experiments confirmed this
to be the best-performing approach.

4 EXPERIMENTAL SETUP
This section introduces our evaluation measures, detailing in partic-
ular the measures for consistency and transitivity of the aggregated
relevance scores, and reviews the data underlying our experiments.

4.1 Evaluation Measures
To evaluate the impact of sparsifying pairwise re-ranking on rank-
ing effectiveness, we use nDCG@𝑘 [20] with 𝑘 = 10, following simi-
lar experiments using the mono/duoT5 models in related work [33].

In addition to retrieval effectiveness, we investigate two proper-
ties of the sampled comparison set which characterize the quality
of the pairwise relevance predictions. They are motivated by the
two kinds of judgment inconsistencies the model can make during
inference, assuming a latent total order of documents: it can con-
tradict itself either (1) for a pair of documents, predicting different
results depending on the order in which documents are fed into

2monoT5: https://huggingface.co/castorini/monot5-3b-msmarco
duoT5: https://huggingface.co/castorini/duot5-3b-msmarco

3https://github.com/grill-lab/trec-cast-tools

https://huggingface.co/castorini/monot5-3b-msmarco
https://huggingface.co/castorini/duot5-3b-msmarco
https://github.com/grill-lab/trec-cast-tools
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the transformer—one would expect 𝑝𝑖 𝑗 = 𝑝 𝑗𝑖 ; and (2) for a triple of
documents, predicting a non-transitive output.

The consistency rate of a comparison set is the ratio of the number
of comparison pairs (𝑑𝑖 , 𝑑 𝑗 ) for which 𝑝𝑖 𝑗 ≥ 0.5 and 𝑝 𝑗𝑖 < 0.5 to the
overall number of comparison pairs. While this indicates howmany
comparisons are consistent with regard to their predicted direction,
the magnitude of the difference between 𝑝𝑖 𝑗 and 𝑝 𝑗𝑖 is also interest-
ing. Thus, we define consistency in terms of the 𝜀-complementarity
rate of the comparison set 𝐶𝑞 for a given query 𝑞 as specialized
case of antisymmetry, the ratio of complementary comparisons to
all comparisons, with respect to a margin of error 𝜀:

consistency(𝜀, 𝑞) =
|{(𝑑𝑖 , 𝑑 𝑗 ) ∈ 𝐶𝑞 | 𝜀 > |𝑝𝑖 𝑗 − (1 − 𝑝 𝑗𝑖 ) |}|

|𝐶𝑞 |
, (4)

The transitivity rate of the comparison graph is the ratio of the
number of transitive triangles 𝑇 (three comparisons that connect
three vertices, but do not form a loop) to the number of triads 𝑈
(two comparisons with one shared document):

transitivity(𝜀, 𝑞) = 3 |𝑇 ||𝑈 | , (5)

where
𝑇 = {(𝑑ℎ, 𝑑𝑖 , 𝑑 𝑗 ) | (𝑑ℎ, 𝑑𝑖 ), (𝑑𝑖 , 𝑑 𝑗 ), (𝑑ℎ, 𝑑 𝑗 ) ∈ 𝐶𝑞 and

𝑝ℎ𝑖 > 0.5, 𝑝𝑖 𝑗 > 0.5, and 𝑝ℎ𝑗 > 0.5}
𝑈 = {(𝑑ℎ, 𝑑𝑖 , 𝑑 𝑗 ) | (𝑑ℎ, 𝑑𝑖 , 𝑝ℎ𝑖 ), (𝑑𝑖 , 𝑑 𝑗 , 𝑝𝑖 𝑗 ) ∈ 𝐶}

If both the transitivity and the consistency in terms of the 𝜀-
complementarity rate of a given set of comparisons 𝐶𝑞 approach 1
for a small 𝜀, a total order between documents is implied, which
increases sampling robustness.

4.2 Data
ClueWeb09. The ClueWeb09 (CW09) corpus4 consists of 1 billion

documents crawled between January and February 2009. It was used
for the ad-hoc search tasks of the TREC Web tracks 2009—2012 [5–
8], where 70,575 graded relevance judgments were collected on a
4-point scale for 200 topics (avg. 356 judgments per topic).

ClueWeb12. The Clueweb12 (CW12)5 corpus consists of 730 mil-
lion documents crawled between April and May 2012. It was used
for the ad-hoc search tasks of the TREC Web tracks 2013 [11] and
2014 [12], where 28,116 graded relevance judgments were collected
on a 4-point scale for 100 topics (avg. 281 judgments per topic).

MSMARCOPassage Corpus. TheMSMARCOpassage corpus [29]
consists of 8.8 million passages extracted from Bing search engine
results. It was used for the passage ranking task of the TREC Deep
Learning tracks 2019 [14] and 2020 [13], where 20,646 graded rel-
evance judgments were collected on a 4-point scale for 97 topics
(avg. 213 judgments per topic). With this corpus, we replicate the
experimental setup of Pradeep et al. [33].

Remark. Only the judged documents of each dataset are subject
to our re-ranking experiments. This guarantees fully judged runs
and consistency. Evaluation scores calculated excluding unjudged
documents correlate well with evaluations including them [36].

4http://lemurproject.org/clueweb09.php/
5https://www.lemurproject.org/clueweb12/

5 EVALUATION RESULTS
We conduct two experiments to evaluate the suitability of sampling
and aggregation methods for efficient pairwise re-ranking. The first
experiment (Section 5.1) explores the properties of the comparison
sets inferred for each of the three collections. This supplies context
to the ranking effectiveness evaluation in the second experiment
(Section 5.2), in which we simulate rankings for different combina-
tions of samplers and aggregators on each experiment collection.

5.1 Evaluation of Pairwise Prediction Properties
For each collection, relevance preference probabilities for the full
pairwise comparison set for the 𝑘 = 50 top-ranked documents
according to the pointwise re-ranking are inferred and cached
separately for each topic on each collection. Across all topics per
collection, three key statistics are computed: In Figure 3, Plot (a)
shows the distribution of predicted scores; Table (b) details the rate
of consistent pairs aggregated over topics; Table (c) gives the transi-
tivity rate aggregated over topics; and Plot (d) shows the cumulative
ratio of complementary comparisons per 𝜖-complementarity rate.

The predicted scores are highly skewed towards the extremes of
the scale: for the majority of document pairs, 𝑝 is near either one
or zero. This effect is more strongly apparent for the MS MARCO
collection (on which the model was trained) than for the ClueWeb
collections. Further, the score distributions are not symmetric, but
have a slight skew towards 1.0 equally present for all three collec-
tions. This already suggests that complementary predictions are
not the norm, as otherwise (since the comparison set is complete),
the distribution would have to be fully symmetric.

Indeed, on average, only between half (MS MARCO) and a third
of the comparisons (CW09) are consistent in their direction. Some
variation across topics exists, yet the majority of topic-wise compar-
ison sets contains a very high degree of inconsistency. Further, the
graph plotting the cumulative ratio of pairs per 𝜖-complementarity
value confirms that the pairwise model is not invariant to the order
in which passages are fed into it. Only for a large value of 𝜖 = 0.4
all scores for all collections are complementary, and more than
half the comparisons require an 𝜖-value between 0.3 (MS MARCO)
and 0.2 (CW09). The ClueWeb collections reaching a lower 𝜖-value
could be due to their differing score distributions compared to
MS MARCO: as their scores tend to be less skewed towards the
extremes, the potential mismatch between a pair of scores is lower
as well. Yet, for all collections, almost no comparison pairs reach
a score disparity of 𝜖 < 0.1. This suggests that sampling by only
inferring one direction of each comparison pair, which would al-
ready cut the required amount of inferences in half, is not feasible.
Transitivity rates are consistently only between 0.7 and 0.8 across
all collections with very little variation per topic, undermining the
prospect of sorting aggregation, as it depends on a total order.

5.2 Evaluation of Ranking Effectiveness
We simulate runs on sparsified comparison sets at sample rates
ranging from 0.05 to 0.95 in 0.05 increments. All combinations of
samplers and aggregators are tested for each sample rate and collec-
tion. Each simulation is repeated ten times to account for random
variation in both the sampling and the aggregation step. In addition,

http://lemurproject.org/clueweb09.php/
https://www.lemurproject.org/clueweb12/
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(a) (b)
Collection Mean Std. Min Max
CW09 0.312 0.136 0.054 0.637
CW12 0.383 0.115 0.120 0.643
MS MARCO 0.498 0.126 0.136 0.731
(c)
Collection Mean Std. Min Max
CW09 0.783 0.079 0.616 0.954
CW12 0.742 0.064 0.611 0.898
MS MARCO 0.693 0.073 0.580 0.901

(d)

Figure 3: (a) Distribution of predicted scores per collection (log-scaled). (b) Antisymmetry rate over all topics, per collection.
(c) Transitivity score over all topics, per collection. (d) Cumulative ratio of complementary comparison pairs dependent on 𝜖.
Collections are color-coded as CW09 , CW12 , and MS MARCO .

Figure 4: nDCG@10 for each aggregator at different sampling rates for G-Random and E-Window sampling per
collection. Dotted line is pointwise re-ranking, dashed line is unsampled effectiveness.

baseline runs for each aggregator are established on the unsam-
pled comparisons. In total, 4950 runs are simulated. Figure 4 shows
the nDCG@10 performance of each aggregation method except
Kwiksort at different sampling rates for G-Random and E-Window

sampling. The reference lines indicate the baseline effectiveness of
the pointwise re-ranking (dotted) and the effectiveness or pairwise
re-ranking on the unsampled complete comparison set (dashed).



Sparse Pairwise Re-ranking with Pre-trained Transformers ICTIR ’22, July 11–12, 2022, Madrid, Spain

Effectiveness of Kwiksort. Judging from the comparison proper-
ties investigated in Section 5.1, the Kwiksort method is expected
to perform sub-par, as it would require a total order to be present
in the comparisons. Indeed, the Kwiksort method scores low, with
nDCG@10 scores ranging from 0.34 (CW09), 0.39 (CW12), to 0.42 (MSMARCO).
This is a net decrease from the pointwise re-ranking, which scores
at 0.38 (CW09), 0.49 (CW12) and 0.50 (MS MARCO). Kwiksort is by
design only using a small subset of the comparisons, and therefore
operates without a dedicated sampling step. Different methods of
choosing a pivot element were tested, with no increase in effective-
ness. Using Kwiksort leads to diminished effectiveness in all cases,
and thus, lacking robustness to deal with inconsistent comparisons,
its use as an aggregation method is discouraged as per this setting.

Effectiveness under no sampling. On the full comparison set,
greedy aggregation performs best across two out of three collec-
tions, beaten only by additive aggregation and only on CW12. On
MS MARCO, the other three aggregation methods score approxi-
mately equal. On the ClueWeb collections, only additive aggregation
continues to yield competitive results. Both PageRank and Bradley-
Terry score below the pointwise re-ranking. For greedy and additive
aggregation, the overall gain in effectiveness is diminshed on the
ClueWeb collections, too, compared to MS MARCO: on CW09, a
delta of ca. 0.04, and on CW12, a delta of ca. 0.01 is observable,
while on MS MARCO, the delta exceeds 0.2 nDCG@10. This is
expected, since (1) the ranking model was trained on MS MARCO,
and (2) the TREC Web track qrels used to evaluate effectiveness on
the ClueWeb collections assess entire documents, while we only
rank one passage per document due to input length limitations.

Effectiveness under parameter-free sampling. On sparse, sampled
comparisons, four trends are apparent across all collections. First,
E-Window sampling performs worse than G-Random sampling in
nearly all cases, especially at smaller sampling rates. This effect
is particularly noticeable for additive aggregation, to no surprise:
the locally bounded comparisons of E-Window sampling are likely
to yield less extreme comparison probabilities. Thus, the additive
sum when aggregating is not impacted as much by each single
comparison, decreasing the overall separability of documents in
very sparse setups. Also, inconsistencies in pairwise judgments are
more likely for documents within local proximity of each other
in the pointwise re-ranking. Overall, this indicates that the global
context of documents (which is better represented by G-Random
sampling) is important to obtain accurate aggregated scores.

Second, greedy aggregation performs best out of all aggregation
methods. This is observable for both for G-Random as well as E-
Window sampling. It is the only aggregation method that matches
its own unsampled performance on sparsified comparison sets, and
also the aggregation method that is most indifferent towards the
choice of sampling scheme. Third, the effectiveness degradation
is not linear with respect to the sample rate, but drops off sharply
below 15-20% of comparisons. This suggests a lower bound under
which no meaningful ranking can be extracted from the pairwise
comparisons, likely because a minimum amount of information is
needed to overcome the inconsistencies in the judgments made by
the pairwise model. Finally, Bradley-Terry aggregation performs
worst, which is likely due to it taking only the direction, not the
magnitude of each comparison into account. This suggests that

Figure 5: nDCG@10 for each aggregator at different sampling
rates for S-Window , G-Random , and E-Window
sampling onMSMARCO. Dotted line is pointwise prior rank-
ing, dashed line is unsampled effectiveness.

optimizing future pairwise models not only towards consistency in
directions, but also complementarity in probabilities is warranted.

Effectiveness under parametric sampling. To find an optimal value
for 𝜆 in S-Window sampling, a grid search is carried out over values
between 2 and 15, separately for all sample rates previously evalu-
ated. Five-fold cross validation is used to determine the best choice.
This experiment is only carried out on the MS MARCO collection,
as overall effectiveness gains on CW09/CW12 were too small to
achieve meaningful separation between setups. Figure 5 shows the
nDCG@10 effectiveness of the run with optimal 𝜆-value for each
sample rate. Runs for parameter-free G-Random and S-Window
sampling are also shown for reference.

S-Window sampling outperforms both other sampling methods
by a margin for each of the aggregation methods at all sampling
rates. It proves to be the best choice across the whole range. In
conjunction with the best performing aggregation methods, greedy
aggregation, S-Window sampling allows for stable performance
down to 30% of comparisons. Even when using an inference expen-
diture lower by an order magnitude (≤ 10%), a competitive ranking
is achieved, scoring only 0.04 less than the unsampled run.

The value for 𝜆 is not correlated with the window size (𝜌 =

0.04), with a value between 7 and 10 found to be optimal in most
cases. Given the favorable performance of G-Random sampling
over E-Window sampling this suggests that the global context is
important when sampling comparisons. The high optimal 𝜆-values
for S-Window sampling corroborate this, as for small window sizes,
they expand the window to cover more global context. For large
windows, 𝜆 is not as important as they (1) already cover a large
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Table 1: nDCG@10 for full comparison set and lowest sample
rate that has non-significantly different ranking per sam-
pling method and aggregator. Delta to full nDCG@10 in
brackets. Bonferroni-correction applied for all tests per row.

Aggregator nDCG@10 Lowest Attainable Sampling Rate

Unsampled S-Window G-Random E-Window

Additive 0.691 0.35 (-0.014) 0.85 (-0.019) 0.95 (-0.004)
Bradley-Terry 0.691 0.50 (-0.012) 1.00 (-0.000) 0.90 (-0.008)
Greedy 0.707 0.30 (-0.013) 0.85 (-0.006) 0.50 (-0.010)
PageRank 0.695 0.30 (-0.016) 0.65 (-0.012) 0.95 (-0.004)

amount of the comparison set, and (2) windows are cyclical, such
that any 𝜆 value increases the coverage of the window.

Statistical Significance. Table 1 lists the minimum attainable sam-
pling rate for which the resulting nDCG@10 is not significantly dif-
ferent to the unsampled baseline for each aggregator and sampling
method. Additionally, the nDCG delta relative to the baseline per ag-
gregator is given.We use a conservative testing strategy with paired
t-tests and Bonferroni correction to account for multiple testing at
an overall 𝛼-level of 0.05. Per aggregator, each of the 19 sampled
runs is tested against the unsampled ones. Bonferroni correction
is applied to each of these test series per aggregator individually.
For G-Random sampling, where performance can differ between
repetitions, the (mean) worst performing run at each sampling step
is taken as representative to reach the highest overall confidence.
Significance tests were only carried out on the MS MARCO collec-
tion, as overall effectiveness gains on CW09/CW12 were too small
to achieve meaningful separation between runs.

Among the sampling strategies, S-Window sampling outper-
forms both other methods by far, achieving the same ranking at less
than a third of the original comparison amount. G-Random sam-
pling reaches a minimum sampling rate of 0.85, and an E-Window
a rate of 0.50. However, on average, G-Random performs better,
undercutting E-Window in three out of four cases. E-Window sam-
pling only fares well for greedy aggregation, and provides virtually
no benefit for other aggregation methods. Among the aggrega-
tion strategies, Bradley-Terry performs worst on average, followed
by additive aggregation. Greedy and PageRank aggregation per-
form nearly on-par with regard to the sample rate, as they both
reach 0.30 with S-Window sampling. However, greedy aggregation
produces the higher absolute nDCG@10 score, and a lower delta to
the baseline than PageRank.

Overall, the choice of the sampling strategy seems to have more
impact on results than the choice of the aggregation method. The
best result is achieved by greedy aggregation with S-Window sam-
pling: the resulting run is on-par with the unsampled case at only
one third of the inference expenditure.

6 CONCLUSION
In this paper, we propose to sparsify the comparison set of pairwise
re-ranking approaches to overcome the issue of quadratic inference
complexity. Instead of computing the full 𝑘2 − 𝑘 comparisons for
𝑘 to-be-re-ranked documents as was done before, we introduce a

sampling step to reduce the number of inferences and compare com-
binations of three different sampling approaches with five different
comparison aggregation methods.

All newly proposed aggregation approaches (Greedy, Bradley-
Terry, PageRank) exceed the performance of the previously es-
tablished one (Additive) on the full comparison set, with greedy
aggregation performing best by a margin. When subject to one of
the three proposed sampling methods, even on a highly sparsified
comparison set, accurate rankings can be inferred, at much lower
cost. In the best case (skip window sampling with greedy aggrega-
tion), the ranking effectiveness of the full comparison set can be
matched at as low as a third of inference expenditure. Even higher
degrees of sparsification are attainable, with acceptable rankings
still being produced at comparison counts lower by an order of mag-
nitude compared to the full set. While globally random sampling
outperforms the locally bounded exhaustive window sampling,
introducing a skip parameter increased the effectiveness of the
structured approach tremendously and yields the best overall re-
sult after optimization. This suggests that the pointwise re-ranking
often leaves room for improvement and that the global context in
the comparison set is needed to accurately re-rank in the pairwise
step. Further, the skip window sampling method is deterministic, a
feature notably lacking for random sampling.

Overall, this paper shows that sparsification in pairwise retrieval
is not only possible, but also highly effective. It increases the effi-
ciency of the method, rendering it more practicable in real-world
settings. The proposed aggregation and sampling schemes establish
a strong baseline, and also open up new areas of future research.
As the tested sampling paradigms of random vs. structured, and
locally vs. globally bounded, respectively, suggest that deterministic
sampling outperforms the random paradigm, yet global context
is important, formulating domain-specific sampling approaches
seems promising for further improvements. Similarly, dynamic
sampling schemes that iteratively sample a comparison set in a
tik-tok pattern, deciding the optimal comparisons to sample next
based on previously inferred scores have successfully been applied
in other contexts and could transfer well to this task. Similar to the
pointwise filtering approach by Zhang et al. [44], pairwise feature-
based filtering could also be used to judge whether a comparison is
worthwhile to compute using neural models. Also, feature-based
approaches could be employed to create pseudo-scores that can be
used as proxy for neural scoring.

Sparsification could also be used not to increase the efficiency,
but instead the depth of pairwise retrieval: instead of optimizing the
inference budget for a fixed depth, one could set a fixed inference
budget and in turn increase the amount of considered documents,
promising higher effectiveness especially for recall-oriented re-
trieval tasks. Yet, this paper also reveals that consistency is lacking
in current pairwise models. Increasing both the consistency (in
direction) and complementarity (in magnitude) of predicted com-
parisons is warranted, and could make even greater degrees of
sparsification possible. Also, highly sparsified comparisons could
be used to probe whether pairwise reranking yields improvements
at all. As illustrated by only minimal improvements on Clueweb
data, the pairwise step could first sample a small subset of compar-
isons and if no improvement is detectable, skip the costly pairwise
re-ranking step altogether.
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