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ABSTRACT

Canonical correlation analysis is concerned with the determination of a linear combination of each of two
sets of variables such that the correlation between the two functions is a maximum. Under certain conditions
this analysis is equivalent to discriminant analysis and under other conditions it is equivalent to multiple
regression. In this paper the relationships among these techniques are discussed, equations relating to pre-
diction by canonical variates are derived, a generalized correlation coefficient is proposed, and an example

of canonical correlation analysis is presented.

1. Introduction

Multiple regression has been used to relate a de-
pendent variable (predictand) to a set of independent
(predictor) variables for many years. Twenty years ago
Hotelling (1936) introduced the concepts of canonical
correlation and canonical variates for the analysis of
relationships between two sets of variables. At about
the same time Barnard (1935) and Fisher (1936) pro-
posed discriminant analysis as a means of using one set
of variables to discriminate between two categories of
another variable; later, this analysis was extended to
more than two predictand groups by Brown (1947),
Bryan (1950) and others. Miller (1964) generalized to
several predictand categories a specialized application
of regression which had been used for two predictand
categories by Mook? and Lund (1955).

It is not generally recognized by meteorologists that
all of the above statistical techniques are embodied in
Hotelling’s canonical correlation analysis. Proofs of this
exist but not in the meteorological literature. In this
paper the relationships among these techniques are
discussed, equations relating to prediction by canonical
variates are derived, a generalized correlation coefficient
is proposed, and an example of canonical correlation
analysis is presented.

2. Canonical variates relationships

Suppose that there exist # observations of each of
p variables X, (4=1,2,---,p) and of ¢ wvariables

1A major portion of this work was accomplished while the
author, employed by the Techniques Development Laboratory
of the Weather Bureau, was on Regerve training with the Com-
puter Application Division, U. S. Air Force.

2 Mook, C. P., 1948: An objective method of forecasting thun-
derstorms for Washington, D. C., in May. Unpublished manu-
script. (Copy in Atmospheric Sciences Library, ESSA, Washing-
ton, D. C.)

Y:(i=1,2, .-, q). These observations represent points
in a (p+¢) dimensional space and can be arranged in
the matrices ,X, and ,Y,. The variables have means
X;and Y, respectively, and deviations from the mean
are given by x;= X;—X; and y;= ¥;— ¥ .. New variables
XpA; and LyB; (t=1,2,.--,7), where # is < the
smaller of p and ¢, can be formed such that their means
are zero and

ASx XA =nl,, 1)
BYa'yBr=n1,, @
A%y Br=n.4A,, 3)
where 1 is the unit matrix,
A
A O
rA = , 4)

Ar

and A >No2> - - 2,

Egs. (1) and (2) state that the variance of each of
the new variables is unity and each is uncorrelated with
all others in its respective set. Eqs. (3) and (4), to-
gether with (1) and (2), state that each ,x,A; is un-
correlated with each .y B; except when i=; and then
the correlation is A;.

It can be shown [for instance, see Anderson (1958)]
that the ,A; (¢=1,2, -+, 7) can be found from

(25115 81268228015~ A 21 ) pA =0, Q)

(providing ;811 and ¢Sss, are not singular), where the
A; satisfy the determinantal equation

l ,,S 1117_18124182211—18211’— )\29117 I = 0: (6)
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and where

1 ’

PO 11p=—pXn Xy, (7
n

pO12¢= 21, = —pXa'Y, (8)

n

1

¢S224=~¢¥4'Ya, )
n

are the variance-covariance matrices. Then the ,B; can
be found from

Br= S22, S01,4,A,7L (10)
Alternatively, use can be made of
(8225718215811, S 12g— A2l ) B =0, (11)
[ oS206 182155115 S124— N2l | =0, (12)
A= 51,7181 B A (13)

The latter equations are to be preferred if ¢<p be-
cause the matrix which must be diagonalized is then of 2

lesser dimension.

The “first” pair of functions, defined by the first
column of each of ,A, and ,B,, have as large a correla-
tion A as any other possible pair of functions, each com-
posed of a linear combination of the original variables.
Also, the “second” function pair have as large a correla-
tion A, as any other possible pair of functions, each being
composed of a linear combination of the original vari-
ables and each being uncorrelated with both members
of the first pair.

Either set of new variables can be predicted in a
least-squares sense by the new variables in the other
set. The prediction equations are

PN

anBr= nprrAr; (14)
and

S

XA= .y BA (15)

Also, the original variables in one set can be predicted
in a least-squares sense by the new variables in the
other set® by :

n?qz nxPArAqu’ (qBTBq,)_l= nprrAquISZZq- (16)
In the case that r=g, (16) can be written as
n¥o= nXpA A B )

Eq. (16) contains the prediction equation for each

of the y; in terms of all of the x;. One may want to

3 Hereafter in this paper only the equations which arise from
considering the y; to be the predictand set are presented.
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relate one set of variables to the other set but involve
only a portion of the correlations X;, perhaps those %
correlations that are judged to be significantly different
from zero. An equation corresponding to Eq. (16) can
be written as

75;(1: nprrAqu’an; (]8)

where .A. has only £ non-zero elements, the others
having been set to zero. Eq. (18) has the effect of
including a contribution from only those & columns of
A, and k rows of ,B, corresponding to the %2 non-
zero correlations.

An error matrix ,&q can be defined as

=Y n¥e: (19)

Then the total variance of each variable v, is given by
the corresponding diagonal element of

n€yq

1 1 '
~(o¥n'Yg) =~ (¥a'+ ¢8a) (WY ot ntq). (20)
n n

Substituting from Eqs. (16) and (1), recognizing that
the predictors are uncorrelated with the errors, and
simplifying, yields

1 1
—(o¥2'y9)= qs22qBrAr2Bq,S22q+—(q£n,9q)- (21)
n n
In the event that r=g, (21) can be written as
1 1
—(o¥4'Ve) = o(B) A - (420 e,). (22)
n n

Each ith diagonal element of the first term on the
right is the amount of variance of the corresponding y;
explained by the predictors and each ¢th diagonal ele-
ment of the last term is the amount of variance of the
corresponding v, unexplained by the predictors. Divi-
sion of a diagonal element of the first term on the right
by the corresponding element of the term on the left
gives the fraction of variance .of that y; which is ex-
plained. These ¢ values are the diagonal elements of

Ro= 0022072822 B A 2B S20002057", (23)

where 022, is a diagonal matrix composed of the
corresponding positive square roots of the diagonal
elements of ;Saz,.

The total explained variance (EV) and the fractional
part R,..? of the total variance (TV) explained are ob-
tained by taking the trace (tr) as follows:

EV=tr(¢S2:,B+A:’B;/Ss0,),
szz: tl’(qS22qBrA-r2Bq/S22q) _ tr(q022qRqo22q). (25)
1r((Sazq) tr(Sazq)

Egs. (23), (24), and (25) can be evaluated as a sum of
7 terms. For instance, Eq. (24) becomes

(24)
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0 0
EV=tr<._,Szqur 0 qu’an)
0
L 0]
[0 i
A 0
—!—tr( S22.B, 0 ,Bq’ngq)+- -
0
L 0]
0 )
0 0
" S P
A

The ith diagonal element in the jth term on the right
before taking the trace, is the amount of variance of the
corresponding y; explained by the jth canonical func-
tion. Also, the jth trace on the right gives the total
amount of variance of the vy, (i=1, 2, -- -, ¢) explained
by the jth canonical function.

If Eq. (23) is expanded in a similar manner, the ith
diagonal element in the jth term is the fractional amount
of variance of the corresponding y; explained by the jth
canonical function. The jth term in the similar expan-
sion of the right side of Eq. (25) is the fractional amount
of the total variance of the y;(4=1,2,---,9) ex-
plained by the jth canonical function. It should be
noted that (R, is invariant under linear transformations
of scale of the predictors and predictands, and that EV
and R,..? are invariant under linear transformations of
scale of the predictors but not of the predictands.

The prediction equations can be put in terms of the
X;and YV, if desired. For instance Eq. (17) becomes

an= XA A B~ nXpAquBq_l"l' an- 27

3. Discriminant analysis formulation

Suppose that there exist # observations of each of p
variables X; (i=1,2, -+, p), and that these observa-
tions can be divided into G groups of sizes n4, 1y, * - -, #6.
The observations can be considered to represent points
in a p-dimensional space where each is tagged with its
respective group number. Also, the observations can
be arranged to form the matrix ,X,. The p overall means
are X; and the deviations are given by x;=X;—X..
The individual group means of these deviations are
given by Z;;(1=1,2,---,p; §=1,2,---,G). New
variables »x,V; (i=1,2, ---,7), where » < the smaller
of p and G—1, can be formed such that the values
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corresponding to a particular group tend to cluster to-
gether about a mean and also that that mean tends to
be separated from other group means. The ,V;are called
discriminant functions.

Within groups, between groups, and total sum of
squares matrices can be defined, respectively, as

W 5= (pXn'— pX,") (nXp— nXp), (28)
#Bp= pXn'Xp, (29)
2L = pX'Xp= Wt B, (30)

where the matrix ,X, is composed of the group means in
the order that the groups are represented in ,X,.

The discriminant functions can be found by solving
[see Bryan (1950)]

(pwp—pr—#iplp) pVi: 0: (31)
in which the u; are solutions of
[ pwp_pr—I‘plpl =0, (32)

Fach p; is interpreted as the ratio of between-
to-within-groups variance of the X; (predictors) due
to the ¢th discriminant function.

Now suppose G—1=¢g dummy variables ¥; (i=1,
2, ---,q) are defined such that ¥ ;=1 if the jth ob-
servation belongs to group ¢ and ¥V ,;=0 if the jth
observation does not belong to group 7. A dummy vari-
able corresponding to the Gth group is not defined since
it would be redundant with the other G—1 groups and
¢S22¢ would be singular, Deviations from the mean are
given by y:;j=¥;;— ¥ and can be put into the matrix
»Yq This predictand matrix and the predictor matrix
»Xp can now be used in the canonical correlation frame-
work and all of the equations in Section 2 apply.

Tatsuoka (1955) and others have shown that the dis-
criminant analysis solution [Egs. (31) and (32)] is
equivalent to the canonical correlation solution [Eqs.
(5) and (6)], where

A2
M= ) (33)
1—X\2
and
oV i=CpA;, (34)

where C is an arbitrary constant which is necessary be-
cause if ,V;is a solution of Eq. (31), C,V;is also, and no
restriction was imposed on the variance of the dis-
criminant functions, However, the discriminant analysis
solution as usually defined stops with the computation
of the ,V; and u; and some other technique must be
employed to find the actual estimates of group member-
ship [for instance, see Miller (1962)], whereas Eq. (27)
can be used to produce estimates of the G—1 binary
predictands directly.

After estimates ¥y (1=1,2,---,G—1) are made,
the estimate for the Gth group is

Y(;j= 1— Z Yij.

de=]

(35
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Predictand group membership is designated by a
“one” and non-membership is indicated by a “zero.”
Therefore, group estimates near ‘“one” or estimates
large with respect to the other estimates would indicate
membership in that group.

Usually, G—1=g¢ is much less than $ and it is more
efficient to solve Eqs. (11), (12) and (13) rather than
than Eqgs. (5), (6) and (10) or Egs. (31) and (32) unless
special methods of solution are devised.

4. Multiple linear regression

Multiple linear regression is concerned with the esti-
.mation of one predictand by a linear combination of
predictors and is a special case of canonical correlation.
If g=1, the equations in Section 2 hold and are much
simplified. In particular, Eq. (16), put in terms of the
original variables X; and YV, is the usual regression
equation,

nYI = ‘nXpsllp_]Slh_ n_)_(psup_lsml‘l- n?l-

The regression estimates can be found separately for
any number of predictands even though the predict-
ands are linearly related. If G dummy variables cenot-
ing group membership are formed as discussed in Sec-
tion 3 and used as predictands, the resulting regression
equations are identical to those derived from the canoni-
cal correlation analysis and can be, written

n?G = nXpsllp—lqu_ nx—psllp_1S120+ nY-G-

It may be sufficiently accurate for some purposes to
consider the estimates ¥; (5=1,2, ---,G) to be the
mean values of ¥; for each observable comgination of
predictor values. In this way the concept of Y ; being an
unbiased estimate of the probability of ¥';is introduced.
Also, for any observable combination of predictor values
the sum of the probability estimates is

(36)

37)

. i}
-2 X1¥i
7 =1
G 4 _ 1 n G _
> V=2 (Xp—1Xp)pSuy Y = 2wy |+ 2 Y
=1 =1 7 =1 i=1
1 a
— 2 %pi¥ii
[ =1 (38)

(n [
2 %y 2 i

=1 =1

1 _ G
=—(1Xp~1Xp) 51157 Z X2 Z yii |2 Y
n =1 1—1 =1
Z X ps Z Vi

=1 =1
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Since
Zlyu Z(YU Yi-)':zl Vi—2 Y., (39)
) i=1 = =1
and
@ G _
Y V,=Y Fu= (40)

1 i

I
A

¥

it is seen that the sum over all G groups of the co-
efficients of each predictor equals zero and that the sum
of the probability estimates equals unity, However, this
does not guarantee that the individual estimates ¥
are bounded by zero and one [see Miller (1964)7].

G .
The fact that > ¥;;=1 justifies Eq. (35). It is
=1

also interesting to note that the criterion for the de-
termination of the regression equations, i.e.,

7.)? is a minimum (41)

zn: (Yi]——

=1

also assures the minimum (best) P-Score [see Brier
(1950)] on the dependent data obtainable by linear pre-
diction equations and the predictors being used.

5. Measures of association between two sets of
variables

Hooper (1959) discusses three measures of associa-
tion between two sets of variables—Hotelling’s (1936)
vector alienation and vector-correlation coefficients
and his proposed trace correlation, The following defini-
tions can be made:

q
Vector correlation coefficient=[]] A2},

=1

(42)

. q
Vector alienation coefficient=[T] (1—A2) 1},

t=1

(43)

1 4q 3
Trace correlation coefficient=s= |:— > }\;{I
q

1=1

1 H
= l:— trquz:I . (44)
q

Hooper (1959) notes that the vector correlation co-
efficient has the undesirable property of being zero if
there are not ¢ non-zero canonical correlations, Also the
vector correlation and vector alienation-coefficients both
tend to zero when g is large. He states that the trace cor-
relation coefficient has ... none of these defects.
and upon comparing

1 4
7_'2=" Z )\,‘2
q =1

(45)
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F16. 1. The 30 stations used in the example.
with

1 e
1—f=-3 (1-)\3), (46)
q =1

concludes that “...#* can be naturally interpreted as
that part of the total variance of the jointly dependent
variables that is accounted for by the systematic part
of the reduced form, and 1—72 as the unexplained
part ...” However, it has been shown in this paper
that Eq. (25) gives the fractional part of the total vari-
ance of the dependent variables accounted for by the
predictors. It is proposed, therefore, that if a single mea-
sure of association is desired, R,..? defined in Eq. (25) is
probably as good as any other even though it is no more
nor less than

Q
2 2R v ane e 2p
i=1

Ry.2= , (47)

TaBiE 1. The canonical correlations A;, canonical correlations
squared A2, and fraction of total variance explained, EV;/TV, by
the most important 15 of the 30 canonical functions.

No. of Canonical
function correlation
i N A2 EV./TV
1 0.94 0.88 0.231
2 0.93 0.86 0.173
3 0.91 0.82 0.097
4 0.90 0.81 0.094
5 0.87 0.76 0.066
6 0.82 0.67 . 0.023
7 0.79 0.62 0.020
8 0.76 0.58 0.012
9 0.72 0.51 0.013
10 0.67 0.44 0.004
i1 0.64 0.41 0.005
12 0.59 0.34 0.002
13 0.55 0.30 0.002
14 0.49 0.24 0.003
15 0.46 0.21 0.001
[}
> 0.683
=1
30
¥ 0.749

F1G. 2. The predictor and predictand functions X108
corresponding to As.

PREDICTAND ]‘a

F16. 3. The predictor and predictand functions X103
corresponding to Ae.
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where o2 is the variance of the 4th predictand and
R 2125, -+ 2, I the reduction of variance of the ith
predictand found by the usual multiple regression
technique: (These reductions of variance and ¢; are also
the diagonal elements of ,R, and 402, respectively.)
A suitable name for R,.,, the positive square root of
R,..%, would be the “composite correlation coefficient.”

As stated previously, R,..? is not invariant to scale
transformations of the predictands (unless the same
linear transformation is imposed on each); however,
this is not necessarily undesirable. If there is only a
single predictand (¢=1), then R,..? is the square of the
multiple correlation of that predictand with the p
predictors.
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F1c. 4. The per cent of the variance of each predictand explained by each of the first 6 predictor functions.

6. An example

As an example of the canonical correlation technique,
5 years of 500-mb heights observed at 30 stations in the
United States at 0000 GMT in June, July and August
were related to the same variables 24 hr earlier. The
stations used are shown in Fig. 1. The sample size was
455. The largest 15 of the resulting 30 canonical correla-
tions are shown in Table 1.

The predictor and predictand functions corresponding
to Ay, and Aq are shown in Figs. 2 and 3; the coefficients
are plotted at the station locations. These functions do
not seem to correspond to any easily recognizable
synoptic pattern, nor given the predictor functions
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F16. 5. The per cent of the variance of each predictand explained by
the first 6 functions, a., and all 30 functions, b.

would one readily expect the corresponding predict-
and functions.

The fractional part of the variance of each predictand
explained by each of the first 6 predictor functions is
shown in Fig. 4. These maps have well-defined patterns
and it can be seen that a particular predictor function,
even that corresponding to Ay, is nearly useless for some
predictands. The fractional part of the variance ex-
plained by the first 6 and all 30 predictor functions is
depicted in Fig. 3. Fig. 5 shows that the first 6 functions
explain most of the variance of which all 30 are capable.

In general, the heights at stations which have no
“upstream’’ stations in the sample are less predictable
than the others. Also, due to their less organized be-
havior, heights at southern stations are less predictable
in terms of reduction of variance than those at northern
stations. Finally, heights at those stations having few
close neighbors are difficult to predict.

Figs. 4 and 5 show that functions 2, 4 and S together
explain 629, of the variance of height at Nashville 24
hr later, while the other 27 functions increase this ex-
plained variance to only 73%,. These same three func-
tions explain only 29, of the variance of height at
Lander. The coefficients in the regression equations de-
rived from these functions for the predictands Nash-
ville and Lander are shown in Fig. 6. The coefficients do
not form a very smooth pattern although the larger
positive values do tend to be near and slightly to the
west of the predictand stations as would be expected.
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T'16. 6. The coefficients X 10° in the regression equations for
predicting the 500-mb height at Nashville, a., and Lander, b.,
derived from functions 2, 4 and 3.

R S ..‘1‘3 A V:

. \( I S - w\‘_oi" Q\E'QA\»‘;
F16. 7. The coefficients X10® in the regression equations for
predicting the 500-mb height at Nashville, a., and Lander, b,,

derived from functions 1, 3 and 7.



30 : JOURNAL OF THE ATMOSPHERIC SCIENCES

]

+ .
N o T e TN ﬁ‘%
Y AL;,-&_.“&..;_;?‘M;MX.LX_ ﬁﬂﬂ "

The magnitudes of the coefficients are in general larger
in the equation which explains a large portion of the
variance of the predictand.

Functions 1, 3 and 7 together explain 719, of the
variance of height at Lander, only 69, less than that
afforded by all 30 functions, but they explain only 5%, of
the variance at Nashville, Again the magnitudes of the
regression coefficients shown in Fig. 7 tend to be larger
in the equation which explains a large portion of the
variance of the predictand.

It is interesting to note that the predictor and pre-
dictand functions ,A; and B; (Figs. 2 and 3) do not
exhibit the smooth patterns of the most important
principal components of the predictand data which are
shown in Fig. 8. (The principal components of predictor
and predictand data are nearly the same in this ex-
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A0t 5

FUNCTION 6 Q)

Fic. 8. The six most important principal components X10? of the predictand data.

ample.) These principal components havé the same
characteristics as the empirical orthogonal functions
(principal components) of sea-level pressure presented
by Lorenz (1956).

Table 1 also contains A2, the fractional part of the
variance of ,Y,B; explained by .X,A; and vice versa,
and EV,/TV, the fractional part of the total variance
of the predictands ,Y, explained by the ith canonical
predictor function. The canonical correlations decrease
rather slowly as ¢ increases but EV,/TV decreases
rapidly. It is possible for EV;/TV to increase as ¢ in-
creases, as evidenced by the entries for 4=8 and 9.

The data used here were highly correlated in time and
455 cases were evidently not sufficient to give very
satisfactory results in terms of the patterns of the co-
efficients in the canonical functions and regression equa-
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tions. (Existing significance tests give little guidance
here since the assumptions underlying the tests are far
from actuality. Lawley’s (1959) test indicates the first 21
canonical correlations to be significant at the 239,
level.) Given a much larger sample, one would expect
the coefficients in the regression equations which ex-
plain a large portion of predictand variance to exhibit
smoother patterns than those shown in Figs. 6 and 7.
Since Fig. 6b and Fig. 7a represent regression equations
which explain only a small portion of predictand vari-
ance and are probably the result of the random com-
ponent in the data, one would not expect them to be
meteorologically meaningful.

In many applications a predictor may occasionally be
in error. If only a very small number of predictors are
in the regression equation, the error may have a large
and detrimental effect on the prediction. The more pre-
dictors there are in the equation the less an error in one
of them will affect the prediction. In cases where there
are several predictands, canonical correlation used very
cautiously may give regression equations which are
slightly better for operational use than those derived by
the well known screening regression (Miller, 1962).
Other factors, such as the problem of missing data, may
overshadow this possible advantage.

Regression equations are not always to be preferred
to discriminant (or canonical) functions. When the
number of groups is large, analysis of the multi-di-
mensional discriminant space is difficult and involves
additional assumptions. However if only 2, or perhaps
3, discriminant functions are important, hand analysis
of scatter diagrams may yield probability estimates that
surpass regression estimates; in this application, dis-
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criminant analysis will have reduced the problem from p
dimensions to 2 or 3 dimensions.
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