Link prediction

Supervised Random Walks: Predicting and Recommending Links in Social Networks

Lars Backstrom (Facebook), Jure Leskovec (Stanford university)
Motivation

- Link prediction, link recommendation: predicting future links between existing nodes.

- Applications:
 - For social networks it has direct business consequences,
 - For networks in organizations, it suggests possible new collaborations.
Supervised framework

- For a given node s positive examples are nodes to which s is linked and negative examples are all the other nodes.

- This cannot be viewed as a classification task → imbalanced classes
 - For example in Facebook, nodes are in average linked to 100 other nodes while Facebook has more than 500 million existing nodes.

- Solution: Rank nodes instead of classifying them. Other popular methods for ranking nodes:
 - PageRank,
 - Random walks with restarts
 - The stationary distribution of such random walks assigns each node a score which gives a ranking of how close to the considered node are other nodes in the network.
Problem formulation

- Given a directed graph \(G(V, E) \), a node \(s \) and two sets: nodes to which \(s \) creates edges \(D = \{d_1, \ldots, d_k\} \) (destination nodes) and nodes to which \(s \) does not create edges \(L = \{l_1, \ldots, l_n\} \) (no-link nodes).

- Each edge \((u, v) \in E \times E \) is characterized by a feature vector \(\Psi_{uv} \in \mathcal{X} \) that describes the nodes \(u \) and \(v \) (age, gender, hometown, etc.) and the interaction attributes (when the edge has been created, how many messages \(u \) and \(v \) exchanged, etc.).

- A function \(f_w : \mathcal{X} \rightarrow \mathbb{R}_+ \) estimating edge strengths is then learned upon \(D \cup L \). Considered functions:
 - Exponential edge strength: \(f_w(\Psi_{uv}) = e^{w \cdot \Psi_{uv}} \)
 - Logistic edge strength: \(f_w(\Psi_{uv}) = \frac{1}{1 + e^{-w \cdot \Psi_{uv}}} \)
Problem formulation

Find parameters w so that the function f_w assigns edge weights in a such way that the random walk will be more likely to visit nodes in D than L

That is if p is the vector scores, $\forall d \in D, \forall l \in L, p_l < p_d$

The proposed optimization problem

$$\min_w F(w) = \|w\|^2 + \lambda \sum_{s \in S} \sum_{d \in D_s, l \in L_s} h(p_l - p_d)$$

Where $h(p_l - p_d) = 0$ if $p_l < p_d$ and $h(p_l - p_d) > 0$ otherwise.

Remarks:

- The optimisation problem is not defined in a traditional ML way
- scores p depend on edge strengths estimated by f_w.
Dependency between p and w

- Consider the random walk stochastic transition matrix Q,

$$\forall u, \forall v, Q_{uv} = (1 - \alpha) \frac{f_w(\Psi_{uv})}{\sum_z f_w(\Psi_{uz})} + \alpha 1_{v=s}$$

The *proposed* interpretation: Q_{uv} is the conditional probability that a walk will traverse edge (u, v) given that it is currently at node u. $\alpha \in [0, 1]$ is the restart probability: with probability α the random walk jumps back to seed node s and restarts.

- The vector scores p is the stationary distribution of the Random walk with restarts, and it is the solution of:

$$p^t = p^t Q$$
Optimization problem is solved using a simple gradient descent method

\[\forall k, \frac{\partial F(w)}{\partial w_k} = 2w_k + \lambda \sum_{s \in S} \sum_{d \in D_s, l \in L_s} \frac{\partial h(x_{ld})}{\partial x_{ld}} \left(\frac{\partial p_l}{\partial w_k} - \frac{\partial p_d}{\partial w_k} \right) \]

Where \(x_{ld} = p_l - p_d \).

As \(\mathbf{p} \) is the principal eigenvector of matrix \(Q \), \(p_u = \sum_j p_j Q_{ju} \) so

\[\frac{\partial p_u}{\partial w_k} = \sum_j Q_{ju} \frac{\partial p_j}{\partial w_k} + p_j \frac{\partial Q_{ju}}{\partial w_k} \]

Remark: \(p_u \) and \(\frac{\partial p_u}{\partial w_k} \) are recursively entangled \(\rightarrow \) the derivatives \(\frac{\partial p_u}{\partial w_k} \) are recursively estimated applying the chain rule.
Features Ψ_{uv} for the co-authorship network

- Number of papers written by u before t,
- Number of papers written by v before t
- Number of papers u and v co-authored
- Cosine similarity between the titles of papers written by u and titles of v’s papers
- Time since u and v last co-authored a paper
- Number of common friends between u and v.